a) Calculate the area of a triangle whose vertices are given by (3, −1, 2), (1, −1, 2)
and (4, −2, 1). (5)
b) Determine the unit tangent vector to the following curve at
t = 1
r i j 5 k
(a) For A(3,-1,2), B(1,-1,2) and C(4,-2,1) vector area of triangle is:
Vector area of the triangle ABC:
Area of the triangle ABC:
(b)
Given that
"r =(1+t^2)\\hat{i} + (4t-3)\\hat{j} + (2t^2-6t)\\hat{k}"
Now , Differentiating it with respect to t:
"r' = 2t\\hat{i} + 4\\hat{j} + (4t-6)\\hat{k}"
Now, Unit tangent vector,
"\\hat{r'} = \\dfrac{\\vec{r'}}{|r'|} \\\\\\Rightarrow \\dfrac{2t\\hat{i} + 4\\hat{j} + (4t-6)\\hat{k}}{\\sqrt{4t^2 + 16 + (4t-6)^2}}"
"\\Rightarrow \\dfrac{2t\\hat{i} + 4\\hat{j} + (4t-6)\\hat{k}}{\\sqrt{(20t^2-12t+52)}} \\\\\\Rightarrow \\dfrac{t\\hat{i} + 2\\hat{j} + (2t-3)\\hat{k}}{\\sqrt{(5t^2-3t+13)}}"
at t=1
the unit tangent vector = "\\dfrac{\\hat i+2\\hat j+(-1)\\hat k}{\\sqrt{15}}=\\frac{1}{\\sqrt{15}}\\hat i+\\frac{2}{\\sqrt {15}}\\hat j - \\frac{1}{\\sqrt{15}}\\hat k"
Comments
Leave a comment