(a) For A(3,-1,2), B(1,-1,2) and C(4,-2,1) vector area of triangle is:
1 2 ( A B → × A C → ) \frac 1 2 (\overrightarrow{AB} \times \overrightarrow{AC}) 2 1 ( A B × A C ) A B → = ( 1 − 3 ) i → + ( − 1 + 1 ) j → + ( 2 − 2 ) k → = − 2 i → \overrightarrow{AB}=(1-3)\overrightarrow{i}+(-1+1)\overrightarrow{j}+(2-2)\overrightarrow{k}=-2\overrightarrow{i} A B = ( 1 − 3 ) i + ( − 1 + 1 ) j + ( 2 − 2 ) k = − 2 i A C → = ( 4 − 3 ) i → + ( − 2 + 1 ) j → + ( 1 − 2 ) k → = i → − j → − k → \overrightarrow{AC}=(4-3)\overrightarrow{i}+(-2+1)\overrightarrow{j}+(1-2)\overrightarrow{k}=\overrightarrow{i}-\overrightarrow{j}-\overrightarrow{k} A C = ( 4 − 3 ) i + ( − 2 + 1 ) j + ( 1 − 2 ) k = i − j − k ( A B → × A C → ) = ∣ i → j → k → − 2 0 0 1 − 1 − 1 ∣ = 0 i → − 2 j → + 2 k → = − 2 j → + 2 k → (\overrightarrow{AB} \times \overrightarrow{AC})=\begin{vmatrix}
\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\
-2 & 0 & 0 \\
1 & -1 & -1
\end{vmatrix} =0\overrightarrow{i}-2\overrightarrow{j}+2\overrightarrow{k}=-2\overrightarrow{j}+2\overrightarrow{k} ( A B × A C ) = ∣ ∣ i − 2 1 j 0 − 1 k 0 − 1 ∣ ∣ = 0 i − 2 j + 2 k = − 2 j + 2 k Vector area of the triangle ABC:
1 2 ( A B → × A C → ) = − j → + k → \frac 1 2 (\overrightarrow{AB} \times \overrightarrow{AC})=-\overrightarrow{j}+\overrightarrow{k} 2 1 ( A B × A C ) = − j + k Area of the triangle ABC:
A r e a = ∣ 1 2 ( A B → × A C → ) ∣ = ( − 1 ) 2 + 1 2 = 2 Area=|\frac 1 2 (\overrightarrow{AB} \times \overrightarrow{AC})|=\sqrt{(-1)^2+1^2}=\sqrt 2 A re a = ∣ 2 1 ( A B × A C ) ∣ = ( − 1 ) 2 + 1 2 = 2
(b)
Given that
r = ( 1 + t 2 ) i ^ + ( 4 t − 3 ) j ^ + ( 2 t 2 − 6 t ) k ^ r =(1+t^2)\hat{i} + (4t-3)\hat{j} + (2t^2-6t)\hat{k} r = ( 1 + t 2 ) i ^ + ( 4 t − 3 ) j ^ + ( 2 t 2 − 6 t ) k ^
Now , Differentiating it with respect to t:
r ′ = 2 t i ^ + 4 j ^ + ( 4 t − 6 ) k ^ r' = 2t\hat{i} + 4\hat{j} + (4t-6)\hat{k} r ′ = 2 t i ^ + 4 j ^ + ( 4 t − 6 ) k ^
Now, Unit tangent vector,
r ′ ^ = r ′ ⃗ ∣ r ′ ∣ ⇒ 2 t i ^ + 4 j ^ + ( 4 t − 6 ) k ^ 4 t 2 + 16 + ( 4 t − 6 ) 2 \hat{r'} = \dfrac{\vec{r'}}{|r'|} \\\Rightarrow \dfrac{2t\hat{i} + 4\hat{j} + (4t-6)\hat{k}}{\sqrt{4t^2 + 16 + (4t-6)^2}} r ′ ^ = ∣ r ′ ∣ r ′ ⇒ 4 t 2 + 16 + ( 4 t − 6 ) 2 2 t i ^ + 4 j ^ + ( 4 t − 6 ) k ^
⇒ 2 t i ^ + 4 j ^ + ( 4 t − 6 ) k ^ ( 20 t 2 − 12 t + 52 ) ⇒ t i ^ + 2 j ^ + ( 2 t − 3 ) k ^ ( 5 t 2 − 3 t + 13 ) \Rightarrow \dfrac{2t\hat{i} + 4\hat{j} + (4t-6)\hat{k}}{\sqrt{(20t^2-12t+52)}} \\\Rightarrow \dfrac{t\hat{i} + 2\hat{j} + (2t-3)\hat{k}}{\sqrt{(5t^2-3t+13)}} ⇒ ( 20 t 2 − 12 t + 52 ) 2 t i ^ + 4 j ^ + ( 4 t − 6 ) k ^ ⇒ ( 5 t 2 − 3 t + 13 ) t i ^ + 2 j ^ + ( 2 t − 3 ) k ^
at t=1
the unit tangent vector = i ^ + 2 j ^ + ( − 1 ) k ^ 15 = 1 15 i ^ + 2 15 j ^ − 1 15 k ^ \dfrac{\hat i+2\hat j+(-1)\hat k}{\sqrt{15}}=\frac{1}{\sqrt{15}}\hat i+\frac{2}{\sqrt {15}}\hat j - \frac{1}{\sqrt{15}}\hat k 15 i ^ + 2 j ^ + ( − 1 ) k ^ = 15 1 i ^ + 15 2 j ^ − 15 1 k ^
Comments