Question #188477

Two stations A and B are 10 km apart in a straight track, and a train starts from A and comes to rest at B. For three quarters of the distance, the train is uniformly accelerated and for the remainder distance uniformly retarded. If it takes 15 minutes over the whole journey, find its acceleration, retardation and the maximum speed it attains.


1
Expert's answer
2021-05-05T10:55:58-0400

For three quarters, the acceleration =a1(forward)=a_1(forward)

For the remaining quarter, acceleration =a2=-a_2

Time taken to cover three quarter's distance =t1=t_1

Time taken to cover remaining quarter =t2=t_2

Total time taken, t1+t2=(15×60)=900 st_1+t_2=(15\times60)=900\space s

Initial velocity of train when it starts from A, u=0u=0

s1=ut12+12a1t12s_1=ut^2_1+\dfrac{1}{2}a_1t_1^2

34×(10×103)=12a1t12\dfrac{3}{4}\times(10\times10^3)=\dfrac{1}{2}a_1t_1^2

t1=3×1042a1                       (1)t_1=\sqrt{\dfrac{3\times10^4}{2a_1}}\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(1)


v2u2=2as1v^2-u^2=2as_1

v=2×a1×3×1044=3×104a12v=\sqrt{2\times a_1\times\dfrac{3\times10^4}{4}}=\sqrt{\dfrac{3\times10^4a_1}{2}}                    (2)\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(2)


For remaining quarter,

initial velocity = vv

final velocity =

0v2=2(a2)s20-v^2=2(-a_2)s_2

v=2×a2×1×1044=104a22                        (3)v=\sqrt{2\times a_2\times\dfrac{1\times10^4}{4}}=\sqrt{\dfrac{10^4a_2}{2}}\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(3)


0=v+(a2)t20=v+(-a_2)t_2

t2=104a22×1a2t_2=\sqrt{\dfrac{10^4a_2}{2}}\times\dfrac{1}{a_2}

t2=1042a2                                 (4)t_2=\sqrt{\dfrac{10^4}{2a_2}}\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(4)

From equation (2) and (3)

3a1a2=03a_1-a_2=0

a2=3a1                                     (5)a_2=3a_1\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space(5)


Adding equation (1) and (4)

t1+t2=3×1042a1+1042a2t_1+t_2=\sqrt{\dfrac{3\times10^4}{2a_1}}+\sqrt{\dfrac{10^4}{2a_2}}

3×1042a1+1042a2=900\sqrt{\dfrac{3\times10^4}{2a_1}}+\sqrt{\dfrac{10^4}{2a_2}}=900

32a1+16a1=9\sqrt{\dfrac{3}{2a_1}}+\sqrt{\dfrac{1}{6a_1}}=9

a1=0.0329 m/s2a_1=0.0329\space m/s^2

a2=0.0987 m/s2a_2=0.0987 \space m/s^2

v=22.214 m/sv=22.214\space m/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS