Solution.
V1=2.0⋅10−3m3;
p1=1.2⋅105Pa;
T1=273K;
p2=1.5⋅105Pa;
a)V=const;
T1P1=T2P2⟹T2=P1P2⋅T1;
T2=1.2⋅105Pa1.5⋅105Pa⋅273K=341K;
b)P1V1=P2V2⟹V2=P2P1V1;
V2=1.2⋅105Pa1.5⋅105Pa⋅2⋅10−3m3=2.5⋅10−3m3;
c) A=νRT2lnV1V2−p1ΔV;
ν=T1P1V1;
ν=273K1.2⋅105Pa⋅2.0⋅10−3m3=0.88mol;
A=0.88mol⋅8.31J/(molK)441Kln2⋅10−3m−32.5⋅10−3m−3+1.2⋅105⋅0.5m−3=−1635J;
Answer: a)T2=341K;
b) V2=2.5⋅10−3m3;
c)A=−1635J.
Comments