To be given in question
Bead velocity in point A v A = 2.1 m e t e r / s e c v_{A}=2.1meter/sec v A = 2.1 m e t er / sec
To be asked in question
Point B and pointC Speed find out
v B = ? ; v C = ? v_{B}=?;v_{C}=? v B = ? ; v C = ?
We know that energy of conservation
at point B speed
1 2 m v f 2 + 1 2 m v i 2 + m g ( h f − h i ) = 0 \frac{1}{2}m{v}_f^2+\frac{1}{2}m{v}_i^2+mg(h_{f}-h_{i}) =0 2 1 m v f 2 + 2 1 m v i 2 + m g ( h f − h i ) = 0
At point B hight zero
h f = 0 h_{f}=0 h f = 0
1 2 m v f 2 − 1 2 m v i 2 + m g ( 0 − h i ) = 0 \frac{1}{2}m{v}_f^2-\frac{1}{2}m{v}_i^2+mg(0-h_{i}) =0 2 1 m v f 2 − 2 1 m v i 2 + m g ( 0 − h i ) = 0
v f 2 − v i 2 = 2 g h i v^2_{f}-v^2_{i} =2gh_{i} v f 2 − v i 2 = 2 g h i
v f 2 = 2 g h i + v i 2 v_{f}^2=2gh_{i}+v^2_{i} v f 2 = 2 g h i + v i 2
v f = 2 g h i + v i 2 v_{f}=\sqrt {2gh_{i}+v^2_{i}} v f = 2 g h i + v i 2
Put value v i = v A = 2.1 m e t e r / s e c v_{i}=v_{A}=2.1meter/sec v i = v A = 2.1 m e t er / sec
v f = 2 g h + 4.41 m e t e r / s e c v_{f}=\sqrt{2gh+4.41} meter/sec v f = 2 g h + 4.41 m e t er / sec
Point B velocity v B = v f = [ v f ] B v_{B}=v_{f}=[v_{f}]_{B} v B = v f = [ v f ] B
[ v f ] B = 2 g h + 4.42 m e t e r / s e c [v_{f}]_{B}=\sqrt{2gh+4.42} meter/sec [ v f ] B = 2 g h + 4.42 m e t er / sec
Pont c velocity
1 2 m v f 2 − 1 2 m v i 2 + m g h f − m g h i = 0 \frac {1}{2}mv^2_{f}-\frac{1}{2}mv^2_{i} +mgh_{f}-mgh_{i}=0 2 1 m v f 2 − 2 1 m v i 2 + m g h f − m g h i = 0
v f 2 − v i 2 = 2 g ( h i − h f ) v^2_{f}-v^2_{i} =2g(h_{i}-h_{f}) v f 2 − v i 2 = 2 g ( h i − h f )
v f 2 = v i 2 + 2 g ( h i − h f ) v^2_{f}=v^2_{i} +2g(h_{i}-h_{f}) v f 2 = v i 2 + 2 g ( h i − h f )
v f = v i 2 + 2 g ( h i − h f ) v_{f}=\sqrt {v^2_{i} +2g(h_{i}-h_{f})} v f = v i 2 + 2 g ( h i − h f )
v f = v c = [ v f ] c v_{f}=v_{c}=[v_{f}]_{c} v f = v c = [ v f ] c
[ v f ] c = 4.41 + 2 g ( h i − h f ) m e t e r / s e c [v_{f}]_{c}=\sqrt{4.41+2g(h_{i}-h_{f}) }meter/sec [ v f ] c = 4.41 + 2 g ( h i − h f ) m e t er / sec
Comments