2. A 30 foot ladder weighing 100 lbs having its center of mass one-third of the way up from the bottom rests against a smooth wall so that it makes an angle of 60 degrees with the ground. If the coefficient of friction between the ground and the ladder is 0.4, how high can a 150-lb man go before the ladder slips.
"\\vec{F}+\\vec{N_0}+m\\vec{g}+M\\vec{g}+\\vec{N_l}=\\vec{0},"
"\\begin{cases}\n -F+N_l=0 \\\\\n -mg-Mg+N_0=0\n\\end{cases}"
"\\begin{cases}\n F=N_l\\\\\n (m+M)g=N_0\n\\end{cases}"
"F\\leqslant \\mu N_0"
"\\begin{cases}\n N_l\\leqslant \\mu N_0\\\\\n (m+M)g=N_0\n\\end{cases}"
"N_l\\leqslant \\mu(m+M)g"
"mg\\frac l3 cos \\alpha +Mgxcos\\alpha=N_l lsin\\alpha"
"gcos\\alpha (Mx+m\\frac l3)=N_l lsin \\alpha"
"Mx+m\\frac l3=\\frac{N_l ltan\\alpha}{g} \\leqslant\\mu(m+M)l tan\\alpha"
"x\\leqslant l(\\mu tan \\alpha(1+\\frac mM)-\\frac{m}{3M})=27.97~ft."
Comments
Leave a comment