Ball A with mass 0.85 kg is rolling at 3.5 m/s [N] when it collides with stationary Ball B with mass 1.15 kg. After the collision, Ball A is moving 2.4 m/s [N40oW]. Find the velocity of Ball B after the collision.
mAvA⃗+mB0⃗=mAuA⃗+mBuB⃗,m_A\vec{v_A}+m_B\vec{0}=m_A\vec{u_A}+m_B\vec{u_B},mAvA+mB0=mAuA+mBuB,
uB⃗=mAmB(vA⃗−uA⃗),\vec{u_B}=\frac{m_A}{m_B}(\vec{v_A}-\vec{u_A}),uB=mBmA(vA−uA),
∣vA⃗−uA⃗∣=vA2+uA2−2vAuAcos(90°−40°)=2.69 ms,|\vec{v_A}-\vec{u_A}|=\sqrt{v_A^2+u_A^2-2v_Au_Acos(90°-40°)}=2.69~\frac ms,∣vA−uA∣=vA2+uA2−2vAuAcos(90°−40°)=2.69 sm, uB=0.851.15⋅2.69=1.99 ms,u_B=\frac{0.85}{1.15}\cdot 2.69=1.99~\frac ms,uB=1.150.85⋅2.69=1.99 sm,
uAsin(90°−p)=uBsin50°, ⟹ \frac{u_A}{sin(90°-p)}=\frac{u_B}{sin50°},\impliessin(90°−p)uA=sin50°uB,⟹
p=90°−arcsin(sin50°⋅uAuB)=22.5° NofE.p=90°-arcsin(sin50°\cdot\frac{u_A}{u_B})=22.5°~NofE.p=90°−arcsin(sin50°⋅uBuA)=22.5° NofE.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments