Question #170218

An automobile accelerates uniformly from rest and reaches a velocity of 22 m/s in 9 s. The tire 

diameter is 58 cm. Determine the number of revolutions the tire makes during this motion 

and the final angular velocity of the tire in revolutions per second


1
Expert's answer
2021-03-16T08:39:48-0400

Given:

ω0=0rad/s\omega_0=0\: \rm rad/s

v=22.0m/sv=22.0\: \rm m/s

t=9.00st=9.00\: \rm s

d=58.0cmd=58.0\:\rm cm

The final angular speed


ω=vR=22.00.58/2=75.9rad/s\omega=\frac{v}{R}=\frac{22.0}{0.58/2}=75.9\:\rm rad/s


(a)


ϕ=ω+ω02=75.9+0.002×9.00=341rad\phi=\frac{\omega+\omega_0}{2}=\rm \frac{75.9+0.00}{2}\times 9.00=341\: radN=ϕ2π=3412π=54.4N=\frac{\phi}{2\pi}=\frac{341}{2\pi}=54.4

(b)


n=2πω=6.28×75.9rad/s=477rev/sn=2\pi\omega=6.28\times 75.9\:\rm rad/s=477 \:\rm rev/s

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS