A crate weighing 80N is pulled along a horizontal surface by a force of 15 N which is applied 20° above the horizontal. If the crate from rest and the coefficient of friction is 0.15, determine the kinetic energy and the velocity of the crate after it has moved a distance of 10 m.
"\\qquad\\qquad\n\\begin{aligned}\n\\small F&= \\small ma\\\\\n\\small R+15\\sin20-80&= \\small0\\\\\n&= \\small 80-5.13\\\\\n\\small R&= \\small 74.87N\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small f&= \\small \\mu R\\\\&= \\small 0.15\\times74.87\\\\\n&= \\small11.23N\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small m&= \\small \\frac{80N}{9.8ms^{-2}}\\\\\n&= \\small 8.16kg\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\to F&= \\small ma\\\\\n\\small 15\\cos20-11.23&= \\small 8.16kg\\times a\\\\\n\\small a&= \\small \\frac{2.865}{8.16}\\\\\n&= \\small 0.35ms^{-2}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\to V^2&= \\small U^2+2as \\\\\n\\small V^2&= \\small 0+2\\times 0.35ms^{-2}\\times10m\\\\\n\\small V^2&= \\small 7m^2s^{-2}\\cdots(1)\\\\\n\\small V&= \\small \\bold{2.65ms^{-1}}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small E_k&= \\small \\frac{1}{2}mV^2\\\\\n&= \\small \\frac{1}{2}\\times 8.16kg\\times 7m^2s^{-2}\\\\\n&= \\small \\bold{28.56\\,J}\n\\end{aligned}"
Comments
Leave a comment