Question #168109
For an extremely relativistic particle of rest energy e=mc² ,show that the momentum (P) is given by;
P=E[1-½(E/E)²] 
1
Expert's answer
2021-03-03T07:55:50-0500

Relativistic momentum p is classical momentum multiplied by the relativistic factor γ.γ.

p=γmu,p=γmu,

where m is the rest mass of the object, uu is its velocity relative to an observer, and the relativistic factor.

γ=11u2c2γ= \large\frac{1}{\sqrt{1-\large\frac{u^2}{c^2}}} p=mu1u2c2p=\large\frac{mu}{\sqrt{1-\large\frac{u^2}{c^2}}} E=mc2m=Ec2E = mc^2 \to m = \large\frac{E}{c^2}

is the three dimensional relativistic momentum of the object in the lab frame with magnitude |p| = p. The relativistic energy E and momentum p include the Lorentz factor defined by:

γ(u)=11uuc2=11(uc)2{\displaystyle \gamma _{(\mathbf {u} )}={\frac {1}{\sqrt {1-{\frac {\mathbf {u} \cdot \mathbf {u} }{c^{2}}}}}}={\frac {1}{\sqrt {1-\left({\frac {u}{c}}\right)^{2}}}}}

Some authors use relativistic mass defined by:

m=γ(u)m0{\displaystyle m=\gamma _{(\mathbf {u} )}m_{0}}

although rest mass m0 has a more fundamental significance and will be used primarily over relativistic mass m in this article.

Squaring the 3-momentum gives:

p2=pp=m02uu1uuc2=m02u21(uc)2{\displaystyle p^{2}=\mathbf {p} \cdot \mathbf {p} ={\frac {m_{0}^{2}\mathbf {u} \cdot \mathbf {u} }{1-{\frac {\mathbf {u} \cdot \mathbf {u} }{c^{2}}}}}={\frac {m_{0}^{2}u^{2}}{1-\left({\frac {u}{c}}\right)^{2}}}}

then solving for u2 and substituting into the Lorentz factor obtains its alternative form in terms of 3-momentum and mass, rather than 3-velocity:

γ=1+(pm0c)2\gamma = \sqrt{1 + \left(\frac{p}{m_0 c}\right)^2}

Inserting this form of the Lorentz factor into the energy equation:

E=m0c21+(pm0c)2E = m_0c^2\sqrt{1 + \left(\frac{p}{m_0 c}\right)^2} (EEo)2\large(\frac{E}{E_o})^2 =1+p2Eo2=1+\large\frac{p^2}{E_o^2} \to p2=Eo2(E2Eo2)p=EoE2Eo2p^2 = E_o^2 (E^2-E_o^2) \to p = E_o\sqrt{E^2-E_o^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS