A particle has acceleration (a) while moving with uniform speed v in a circle of radius r. Start with a ∝ rnvm. Derive the relationship between a, r and v using dimensional analysis.
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small a&\\propto r^n\\cdot v^m\\\\\n\\small [a]&= \\small LT^{-2}\\\\\n\\small [r]&= \\small L\\\\\n\\small [v]&= \\small LT^{-1}\\\\\n\\\\\n\\small LT^{-2}&\\propto \\small L^n\\cdot (LT^{-1})^m\\\\\n&\\propto \\small L^{(n+m)}\\cdot T^{-m}\\\\\n\\\\\n\\small L:\\,\\,\\,\\qquad1&=n+m\\cdots(1)\\\\\n\\small T:\\qquad-2&\\propto \\small -m\\\\\n\\\\\n\\small m&= \\small 2\\\\\n\\small n&= \\small 1-2=-1\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small a&\\propto \\small k\\cdot\\frac{v^2}{r}\\qquad or\\qquad a= k\\cdot\\frac{v^2}{r}\n\\end{aligned}"
Comments
Leave a comment