Question #167252

A rectangular block on material is subjected to a tensile stress of 100 N/mm2 on one plane and 

a tensile stress of 50 N/mm2

on a plane at right angles, together with shear stress of 60N/mm2

on the 

faces. Find:

a) The direction of principal planes

b) The magnitude of principal stresses and 

c) Magnitude of greatest shear stress.


1
Expert's answer
2021-02-28T07:34:01-0500

Stress in x direction:

σx=100 N/mm2\sigma_x=100\ N/mm^2

Stress in y direction:

σy=50 N/mm2\sigma_y=50\ N/mm^2

Shear stress:

τxy=60 N/mm2\tau_{xy}=60\ N/mm^2


Principal stresses:

σ1,2=σx+σy2±(σxσy2)2+τxy2\sigma_{1,2}=\frac{\sigma_x+\sigma_y}{2}\pm\sqrt{(\frac{\sigma_x-\sigma_y}{2})^2+\tau_{xy}^2}

σ1,2=100+502±(100502)2+602\sigma_{1,2}=\frac{100+50}{2}\pm\sqrt{(\frac{100-50}{2})^2+60^2}

σ1=140 N/mm2\sigma_1=140\ N/mm^2

σ2=10 N/mm2\sigma_2=10\ N/mm^2


Direction of principal plane:

tan2θp=σxσy2τxytan2\theta_p=-\frac{\sigma_x-\sigma_y}{2\tau_{xy}}

tan2θp=10050260=5/12tan2\theta_p=-\frac{100-50}{2\cdot60}=-5/12

θp=11.31°\theta_p=-11.31\degree


The greatest shear stress:

τmax=σ1σ2/2\tau_{max}=|\sigma_1-\sigma_2|/2

τmax=(14010)/2=65 N/mm2\tau_{max}=(140-10)/2=65\ N/mm^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS