A rectangular block on material is subjected to a tensile stress of 100 N/mm2 on one plane and
a tensile stress of 50 N/mm2
on a plane at right angles, together with shear stress of 60N/mm2
on the
faces. Find:
a) The direction of principal planes
b) The magnitude of principal stresses and
c) Magnitude of greatest shear stress.
Stress in x direction:
"\\sigma_x=100\\ N\/mm^2"
Stress in y direction:
"\\sigma_y=50\\ N\/mm^2"
Shear stress:
"\\tau_{xy}=60\\ N\/mm^2"
Principal stresses:
"\\sigma_{1,2}=\\frac{\\sigma_x+\\sigma_y}{2}\\pm\\sqrt{(\\frac{\\sigma_x-\\sigma_y}{2})^2+\\tau_{xy}^2}"
"\\sigma_{1,2}=\\frac{100+50}{2}\\pm\\sqrt{(\\frac{100-50}{2})^2+60^2}"
"\\sigma_1=140\\ N\/mm^2"
"\\sigma_2=10\\ N\/mm^2"
Direction of principal plane:
"tan2\\theta_p=-\\frac{\\sigma_x-\\sigma_y}{2\\tau_{xy}}"
"tan2\\theta_p=-\\frac{100-50}{2\\cdot60}=-5\/12"
"\\theta_p=-11.31\\degree"
The greatest shear stress:
"\\tau_{max}=|\\sigma_1-\\sigma_2|\/2"
"\\tau_{max}=(140-10)\/2=65\\ N\/mm^2"
Comments
Leave a comment