an elementary particle is projectedin a dark hole, it is spirally and its position is defined as r=(t^2+7t)i-e^-3tj+7sin4t. find its velocityand accelerationat t=0, t=1 and at what time is particle at rest
r=(t2+7t)i−e−3tj+7sin4tr = (t^2+7t)i - e^{-3t}j + 7sin4tr=(t2+7t)i−e−3tj+7sin4t
v=r′ →v=(2t+7)i+3e−3tj+28cos4tv = r' \space \to v = (2t+7)i +3e^{-3t}j + 28cos4tv=r′ →v=(2t+7)i+3e−3tj+28cos4t
v(0)=7i+3j+28v(0) = 7i+3j+28v(0)=7i+3j+28
v(1)=9i+3e−3j+28cos4v(1)= 9i+3e^{-3}j+28cos4v(1)=9i+3e−3j+28cos4
a=v′→a=2i−9e−3tj−112sin4ta = v' \to a = 2i - 9e^{-3t}j-112sin4ta=v′→a=2i−9e−3tj−112sin4t
a(0)=2i−9ja(0) = 2i - 9ja(0)=2i−9j
a(1)=2i−9e−3j−112sin4a(1) = 2i - 9e^{-3}j-112sin4a(1)=2i−9e−3j−112sin4
time is particle at rest v=(2t+7)i+3e−3tj+28cos4t=0v = (2t+7)i +3e^{-3t}j + 28cos4t = 0v=(2t+7)i+3e−3tj+28cos4t=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments