Question #161367

A ball is thrown horizontally from the roof of a 20.0 m high building and lands 10.0 m away from the base of the building. Determine initial and final velocity.


1
Expert's answer
2021-02-05T02:13:52-0500

a) Let's first find the time that the ball takes to reach the ground:


y=12gt2,y=\dfrac{1}{2}gt^2,t=2yg=220 m9.8 ms2=2.0 st=\sqrt{\dfrac{2y}{g}}=\sqrt{\dfrac{2\cdot20\ m}{9.8\ \dfrac{m}{s^2}}}=2.0\ s

Then, the initial horizontal velocity can be found as follows:


v0x=xt=10 m2.0 s=5 ms.v_{0x}=\dfrac{x}{t}=\dfrac{10\ m}{2.0\ s}=5\ \dfrac{m}{s}.

b) The initial horizontal velocity remains unchainged during the flight of the ball. Let's find the final vertical velocity of the ball:


vy=v0ygt=09.8 ms22.0 s=19.6 ms.v_y=v_{0y}-gt=0-9.8\ \dfrac{m}{s^2}\cdot2.0\ s=-19.6\ \dfrac{m}{s}.

Then, we can find the final velocity of the ball from the Pythagorean theorem:


v=vx2+vy2=(5 ms)2+(19.6 ms)2=20.23 ms.v=\sqrt{v_x^2+v_y^2}=\sqrt{(5\ \dfrac{m}{s})^2+(-19.6\ \dfrac{m}{s})^2}=20.23\ \dfrac{m}{s}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS