We must find the area of a triangle whose vertices are given by (3, −1, 2), (1, −1, 2)
and (4, −2, 1).
A(3, -1, 2); B(1, -1, 2); C(4, -2, 1)
S = δ A B C = 1 2 S = \delta ABC = \large\frac{1}{2} S = δ A BC = 2 1 ∣ A B → ∗ A C → ∣ |\overrightarrow{AB}*\overrightarrow{AC} | ∣ A B ∗ A C ∣
A B → = − 2 i → \overrightarrow{AB} = -2\overrightarrow{i} A B = − 2 i A C → = i → − j → − k → \overrightarrow{AC} =\overrightarrow{i}-\overrightarrow{j}-\overrightarrow{k} A C = i − j − k
A B → ∗ A C → = \overrightarrow{AB}*\overrightarrow{AC} = A B ∗ A C = i → j → k → \space\space\space \space\space\space \space\space\space \space\space\space \overrightarrow{i} \space\space\space \overrightarrow{j}\space\space\space \overrightarrow{k} i j k
1 -1 -1 → 2 j → − 2 k → \to 2\overrightarrow{j}-2\overrightarrow{k} → 2 j − 2 k
-2 0 0
A r e a = 1 2 ∣ 2 j → − 2 k → ∣ = 1 2 ( 2 ) 2 + ( − 2 ) 2 = 2 Area = \frac{1}{2}|2\overrightarrow{j}-2\overrightarrow{k}| = \frac{1}{2}\sqrt{(2)^2+(-2)^2}=\sqrt{2} A re a = 2 1 ∣2 j − 2 k ∣ = 2 1 ( 2 ) 2 + ( − 2 ) 2 = 2
Answer 2 \sqrt{2} 2 sq. units
Comments