Calculate the area of a triangle whose vertices are given by (3, −1, 2), (1, −1, 2)
and (4, −2, 1).
We must find the area of a triangle whose vertices are given by (3, −1, 2), (1, −1, 2)
and (4, −2, 1).
A(3, -1, 2); B(1, -1, 2); C(4, -2, 1)
"S = \\delta ABC = \\large\\frac{1}{2}""|\\overrightarrow{AB}*\\overrightarrow{AC} |"
"\\overrightarrow{AB} = -2\\overrightarrow{i}" "\\overrightarrow{AC} =\\overrightarrow{i}-\\overrightarrow{j}-\\overrightarrow{k}"
"\\overrightarrow{AB}*\\overrightarrow{AC} =" "\\space\\space\\space \\space\\space\\space \\space\\space\\space \\space\\space\\space \\overrightarrow{i} \\space\\space\\space \\overrightarrow{j}\\space\\space\\space \\overrightarrow{k}"
1 -1 -1 "\\to 2\\overrightarrow{j}-2\\overrightarrow{k}"
-2 0 0
"Area = \\frac{1}{2}|2\\overrightarrow{j}-2\\overrightarrow{k}| = \\frac{1}{2}\\sqrt{(2)^2+(-2)^2}=\\sqrt{2}"
Answer "\\sqrt{2}" sq. units
Comments
Leave a comment