Question #160823

Calculate the area of a triangle whose vertices are given by (3, −1, 2), (1, −1, 2) 

and (4, −2, 1).


1
Expert's answer
2021-02-04T10:20:14-0500

We must find the area of a triangle whose vertices are given by (3, −1, 2), (1, −1, 2) 

and (4, −2, 1).

A(3, -1, 2); B(1, -1, 2); C(4, -2, 1)

S=δABC=12S = \delta ABC = \large\frac{1}{2}ABAC|\overrightarrow{AB}*\overrightarrow{AC} |

AB=2i\overrightarrow{AB} = -2\overrightarrow{i} AC=ijk\overrightarrow{AC} =\overrightarrow{i}-\overrightarrow{j}-\overrightarrow{k}

ABAC=\overrightarrow{AB}*\overrightarrow{AC} =             i   j   k\space\space\space \space\space\space \space\space\space \space\space\space \overrightarrow{i} \space\space\space \overrightarrow{j}\space\space\space \overrightarrow{k}

1 -1 -1 2j2k\to 2\overrightarrow{j}-2\overrightarrow{k}

-2 0 0

Area=122j2k=12(2)2+(2)2=2Area = \frac{1}{2}|2\overrightarrow{j}-2\overrightarrow{k}| = \frac{1}{2}\sqrt{(2)^2+(-2)^2}=\sqrt{2}

Answer 2\sqrt{2} sq. units


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS