Question #159956

In the figure here, a red car and a green car move toward each other in adjacent lanes and parallel to an x axis. At time t = 0, the red car is at xr = 0 and the green car is at xg = 213 m. If the red car has a constant velocity of 22.0 km/h, the cars pass each other at x = 43.6 m. On the other hand, if the red car has a constant velocity of 44.0 km/h, they pass each other at x = 76.7 m. What are (a) the initial velocity and (b) the (constant) acceleration of the green car? Include the signs.


1
Expert's answer
2021-02-02T18:48:27-0500


Let's first convert the velocity of the red car in both cases from km/h to m/s:


v1=22.0 kmh1000 m1 km1 h3600 s=6.11 ms,v_1=22.0\ \dfrac{km}{h}\cdot\dfrac{1000\ m}{1\ km}\cdot\dfrac{1\ h}{3600\ s}=6.11\ \dfrac{m}{s},v2=44.0 kmh1000 m1 km1 h3600 s=12.22 ms.v_2=44.0\ \dfrac{km}{h}\cdot\dfrac{1000\ m}{1\ km}\cdot\dfrac{1\ h}{3600\ s}=12.22\ \dfrac{m}{s}.

Then, we can find the time when the two cars  pass each other for both cases:


t1=x1v1=43.6 m6.11 ms=7.1 s,t_1=\dfrac{x_1}{v_1}=\dfrac{43.6\ m}{6.11\ \dfrac{m}{s}}=7.1\ s,t2=x2v2=76.7 m12.22 ms=6.3 s.t_2=\dfrac{x_2}{v_2}=\dfrac{76.7\ m}{12.22\ \dfrac{m}{s}}=6.3\ s.


Let's write the equations of motion of the green car in both cases:


x1fx1i=v0t1+12at12,x_{1f}-x_{1i}=v_0t_1+\dfrac{1}{2}at_1^2,x2fx2i=v0t2+12at22.x_{2f}-x_{2i}=v_0t_2+\dfrac{1}{2}at_2^2.

Then, we get:


43.6213=7.1v0+12a(7.1)2,43.6-213=7.1v_0+\dfrac{1}{2}a(7.1)^2,76.7213=6.3v0+12a(6.3)2.76.7-213=6.3v_0+\dfrac{1}{2}a(6.3)^2.

After simplification, we get:


7.1v0+25.2a=169.4,7.1v_0+25.2a=-169.4,6.3v0+19.84a=136.3.6.3v_0+19.84a=-136.3.

Let's express aa from the first equation in terms of v0v_0:


a=169.47.1v025.2.a=\dfrac{-169.4-7.1v_0}{25.2}.

Substituting aa into the second equation, we get:


6.3v0+19.8425.2(169.47.1v0)=136.3.6.3v_0+\dfrac{19.84}{25.2}(-169.4-7.1v_0)=-136.3.

From this equation, we can find v0v_0:


17.9v0=73.96,17.9v_0=-73.96,v0=73.9617.9=4.13 ms.v_0=\dfrac{-73.96}{17.9}=-4.13\ \dfrac{m}{s}.

Then, substituting v0v_0 into the expression for aa we get:


a=169.47.1(4.13)25.2=5.56 ms2.a=\dfrac{-169.4-7.1\cdot(-4.13)}{25.2}=-5.56\ \dfrac{m}{s^2}.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS