Question #159222

One cubic centimeter of a typical cumulus cloud contains 110 water drops, which have a typical radius of 10 μm. (a) How many cubic meters of water are in a cylindrical cumulus cloud of height 3.1 km and radius 1.1 km? (b) How many 1-liter pop bottles would that water fill? (c) Water has a density of 1000 kg/m3. How much mass does the water in the cloud have?


1
Expert's answer
2021-01-28T15:10:36-0500

let Vcm3 volume of water in 1cm3\text{let }V_{cm^3}\text{ volume of water in }1cm^3

Vcm3=VdropnV_{cm^3}=V_{drop}n

n=110n= 110

we assume that a drop is a sphere\text{we assume that a drop is a sphere}

Vdrop=43πR3V_{drop}=\frac{4}{3}\pi{R^3}

R=10μm=10106m=105m=103cmR =10 μm= 10*10^{-6}m= 10^{-5}m=10^{-3}cm  

Vdrop=43π109cm3V_{drop}=\frac{4}{3}\pi{10^{-9}}cm^3

Vcm3=4403π109cm3V_{cm^3}=\frac{440}{3}\pi{10^{-9}}cm^3

k=Vcm31cm3=4403π1094.6107k = \frac{V_{cm^3}}{1cm^3}=\frac{440}{3}\pi{10^{-9}}\approx4.6*10^{-7}

kcoefficient when multiplied by which total volumek -\text{coefficient when multiplied by which total volume}

we get the volume of water\text{we get the volume of water}

a)Vcloud=πR2ha)V_{cloud}=\pi{R^2}h

R=1.1km=1100m;h=3.1km=3100mR=1.1km=1100m;h=3.1km=3100m

Vcloud=π1100231001.181010m3V_{cloud}=\pi*{1100^2}*3100\approx1.18*10^{10}m^3

Vwater=kVcloudV{water}=k*V{cloud}

Vwater=4.61071.181010=5.43103m3=5430m3V{water}=4.6*10^{-7}*1.18*10^{10}=5.43*10^3m^3=5430m^3

b)1liter=1dm3=103m3b) 1 -liter = 1dm^3=10^{-3}m^3

count bottles=Vwatter103=5.43103103=5.43106=5430000\text{count bottles}=\frac{V{watter}}{10^{-3}}=\frac{5.43*10^3}{10^{-3}}=5.43*10^6=5430000

c)m=ρVc) m =\rho*V

m=54301000=5430000kgm = 5430*1000=5430000kg

Answer:a)5430 m^3 b)5430000 c)5430000 kg


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Jordi
29.01.21, 00:04

Thank you! I found my mistake

LATEST TUTORIALS
APPROVED BY CLIENTS