The viscous drag force F, on a sphere of radius r, moving through a fluid with velocity v, can be expressed as F = 6PLrv, where L is the coefficient of viscosity of the fluid and P = pie(22/7). What are the base units of L?
Explanation & Calculations
[F]=[6πLrv]=[6π][L][r][v]MLT−2=[L]×L×LT−1[L]=MLT−2L2T−1[L]=ML−1T−1\qquad\qquad \begin{aligned} \small [F]&=\small [6\pi Lrv]=[6\pi][L][r][v]\\ \small MLT^{-2}&= \small [L]\times L\times LT^{-1}\\ \small [L]&=\small \frac{MLT^{-2}}{L^2T^{-1}}\\ \small [L]&= \small ML^{-1}T^{-1} \end{aligned}[F]MLT−2[L][L]=[6πLrv]=[6π][L][r][v]=[L]×L×LT−1=L2T−1MLT−2=ML−1T−1
Units of L=kgm−1s−1\qquad\qquad \begin{aligned} \small \text{Units of L}&= \small \bold{kgm^{-1}s^{-1}} \end{aligned}Units of L=kgm−1s−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments