Explain poission bracket condition for canonical transformation.
[f,g]p,q = [f,g]P,Q
Poission bracket
[Q,P]=−(∂Q∂p)q(∂P∂q)Q=(∂Q∂p)q∂2F∂q∂Q=(∂Q∂p)q(∂p∂Q)q=1[Q,P] = -(\frac{ \partial Q}{ \partial p})_q (\frac{ \partial P}{ \partial q})_Q =(\frac{ \partial Q}{ \partial p})_q \frac{\partial^2F} {\partial q \partial Q} =(\frac{\partial Q} {\partial p})_q (\frac{\partial p}{\partial Q})_q =1[Q,P]=−(∂p∂Q)q(∂q∂P)Q=(∂p∂Q)q∂q∂Q∂2F=(∂p∂Q)q(∂Q∂p)q=1
This is used to show general poission bracket is independent of the parametrization of phase space
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments