Question #152793

Write an expression describing a transverse waves traveling along the string in the+ x direction wave length 11.4 cm,frequency 385hz ,and amplitude 2.13


1
Expert's answer
2020-12-25T14:06:05-0500

Explanations & Calculations


  • The relationship for the displacements of a particle on a transverse sinusoidal wave moving in +x direction is given by,

y(x,t)=Asin(kxωt)\qquad\qquad \begin{aligned} \small y_{(x,t)}&= \small A\sin (kx-\omega t)\\ \end{aligned}


  • A = amplitude of the wave
  • k=2πλ\small k=\large \frac{2\pi}{\lambda} and ω=2πf=2πvλ\small \omega =2\pi f=2\pi \large\frac{v}{\lambda}
  • f=\small f= frequency and v=\small v= speed of the wave


  • Substituting the given values,
  • k=2π0.114m=55.12m1\small k=\large\frac{2\pi}{0.114m}=\small 55.12\,m^{-1}
  • ω=2π×385s1=2419.03s1\small \omega = 2\pi\times 385s^{-1}=2419.03\,s^{-1}


  • These yeild,

y(x,t)=2.13(55.12x2419.03t)\qquad\qquad \begin{aligned} \small\bold{ y_{(x,t)}}&= \small \bold{2.13(55.12x-2419.03t)} \end{aligned}


  • Additionally, the speed of a transverse wave on a string is given by

v=Tρ\qquad\qquad \begin{aligned} \small v&= \small \sqrt {\frac{T}{\rho}} \end{aligned} : ρ\small \rho is the mass per unit length/linear density

  • And also waves on a string obays the wave equation,

2yx2=1v22yt2\qquad\qquad \begin{aligned} \small \frac{\partial^2y}{\partial x^2}&= \small \frac{1}{v^2}\frac{\partial^2y}{\partial t^2} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS