a horizontal venturimeter with inlet diameter 30 cm and throat diameter 15cm is used to measure the flow of oil of specific gravity 0.8. The discharge of oil through venturimeter is 50 litres/s. Take C=0.98. write the reading of the oil-mercury differential manometer (x)
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small P_1 +\\frac{1}{2}\\rho v^2_1&=P_2+\\frac{1}{2}\\rho v^2_2\\\\\n\\small P_1-P_2&= \\small \\frac{1}{2}\\rho(v_2^2-v_1^2)\\cdots(1)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small Q&= \\small CA_1v_1=CA_2v_2\\cdots\n\\end{aligned}" without C, the ideal volumetric flow is addressed.
"\\qquad\\qquad\n\\begin{aligned}\n\\small P_1-P_2&= \\small \\frac{1}{2}\\rho\\bigg[\\frac{Q^2}{C^2A_2^2}-\\frac{Q^2}{C^2A_1^2}\\bigg] \\\\\n&= \\small \\frac{1}{2}\\rho\\frac{Q^2}{C^2}\\bigg[\\frac{1}{A_2^2}-\\frac{1}{A_1^2}\\bigg]\\cdots(2)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small P_1+(h+x)\\rho g&= \\small P_2 +h\\rho g+xdg\\\\\n\\small P_1-P_2 &= \\small xg(d-\\rho)\\cdots(2) \n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small\n\\end{aligned}" "\\qquad\\qquad\n\\begin{aligned}\n\\small xg(d-\\rho) &= \\small \\frac{1}{2}\\rho\\frac{Q^2}{C^2}\\bigg[\\frac{1}{A_2^2}-\\frac{1}{A_1^2}\\bigg]\\\\\n\\small x&= \\small \\frac{1}{2}\\rho\\frac{Q^2}{C^2}\\bigg[\\frac{1}{A_2^2}-\\frac{1}{A_1^2}\\bigg]\\times\\frac{1}{g(d-\\rho)}\\cdots(3)\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small A_1= \\small \\pi\\frac{D^2}{4}=\\pi\\frac{(30cm)^2}{4}&=\\small706.858\\,cm^2\\\\\n\\small A_2 &=\\small 176.715cm^2\\\\\n\\small Q&= \\small 50\\times 10^3 cm^3\/s\\\\\n\\small \\rho &= \\small 800\\,kgcm^{-3}\\\\\n\\small d&= \\small 13600\\,kgcm^{-3}\\\\\n\\small g&= \\small 9.8\\times 10^2cms^{-2}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small x&= \\small \\bold{2.492\\,cm}\n\\end{aligned}"
Comments
Leave a comment