Question #150705

vector A of magnitude 20 units lies in the direction 45 degrees S of E, while vector B, of magnitude 30 units is in the direction 60 degrees W of N. Calculate the scaler product A.B


1
Expert's answer
2020-12-14T12:13:01-0500

AB=ABcosθ\vec{A}*\vec{B}=| \vec{A}|| \vec{B}|\cos\theta

θ1=(W,S)+450(S of E)+600(W of N)=\theta_1= \angle(W,S)+45^0\text{(S of E)}+60^0\text{(W of N)}=

=900+450+600=1950= 90^0+45^0+60^0= 195^0

θ1>1800 hence this is the outer angle\theta_1>180^0\text{ hence this is the outer angle}

θ1=3600θ=1650\theta_1= 360^0-\theta= 165^0

AB=ABcosθ=2030cos1650579.6\vec{A}*\vec{B}=| \vec{A}|| \vec{B}|\cos\theta=20*30*\cos{165^0}\approx-579.6

Answer: -579.6 scaler product




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
22.09.21, 14:23

Dear Praiz jazz, 90° is the angle between West and South


Praiz jazz
22.09.21, 11:16

Why did we plus the angles with 90°

LATEST TUTORIALS
APPROVED BY CLIENTS