vector A of magnitude 20 units lies in the direction 45 degrees S of E, while vector B, of magnitude 30 units is in the direction 60 degrees W of N. Calculate the scaler product A.B
A⃗∗B⃗=∣A⃗∣∣B⃗∣cosθ\vec{A}*\vec{B}=| \vec{A}|| \vec{B}|\cos\thetaA∗B=∣A∣∣B∣cosθ
θ1=∠(W,S)+450(S of E)+600(W of N)=\theta_1= \angle(W,S)+45^0\text{(S of E)}+60^0\text{(W of N)}=θ1=∠(W,S)+450(S of E)+600(W of N)=
=900+450+600=1950= 90^0+45^0+60^0= 195^0=900+450+600=1950
θ1>1800 hence this is the outer angle\theta_1>180^0\text{ hence this is the outer angle}θ1>1800 hence this is the outer angle
θ1=3600−θ=1650\theta_1= 360^0-\theta= 165^0θ1=3600−θ=1650
A⃗∗B⃗=∣A⃗∣∣B⃗∣cosθ=20∗30∗cos1650≈−579.6\vec{A}*\vec{B}=| \vec{A}|| \vec{B}|\cos\theta=20*30*\cos{165^0}\approx-579.6A∗B=∣A∣∣B∣cosθ=20∗30∗cos1650≈−579.6
Answer: -579.6 scaler product
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Dear Praiz jazz, 90° is the angle between West and South
Why did we plus the angles with 90°
Comments
Dear Praiz jazz, 90° is the angle between West and South
Why did we plus the angles with 90°