"\\frac{d\u00b2x}{dt\u00b2} + 8x = 20\\cos2t."The solution
"x=A\\cos2t+B\\sin2t."
We obtain
"-4A\\cos2t-4B\\sin2t - 8A\\sin2t+8B\\cos2t""+ 8A\\cos2t+8B\\sin2t = 20\\cos2t."Hence
"4A+8B=20,\\quad -8A+4B=0.""B=2A, \\; A=1.""x=\\cos2t+2\\sin2t=\\sqrt{5}\\cos(2t+\\arctan2).""x=\\cos2t+2\\sin2t=\\sqrt{5}\\cos(2t+\\arctan2)."Therefore:
amplitude "a=\\sqrt{5};"
"a=\\sqrt{5};"
period "T=\\frac{2\\pi}{\\omega}=\\pi;"
frequency "f=1\/T=1\/\\pi."
Comments
Leave a comment