dt2d2x+8x=20cos2t.The solution
x=Acos2t+Bsin2t.
We obtain
−4Acos2t−4Bsin2t−8Asin2t+8Bcos2t+8Acos2t+8Bsin2t=20cos2t.Hence
4A+8B=20,−8A+4B=0.B=2A,A=1.x=cos2t+2sin2t=5cos(2t+arctan2).x=cos2t+2sin2t=5cos(2t+arctan2).Therefore:
amplitude a=5;
a=5;
period T=ω2π=π;
frequency f=1/T=1/π.
Comments