"Solution"
"Given:\\ y_D=4.3m\\\\\nV_i=30m\\ \\ \/s\\ and\\ \\theta=35\\degree\\\\\nWhere=V_{ix}=V_i\\ cos\\theta=(30m\/s)\\times\\ Cos\\ (35)\\degree=24.57m\/s\\\\\nV_(iy)=V_i\\ sin\\theta=30m\/s\\times\\ sin(35\\degree)=17.207m\/s"
i) In case we want to determine the time of flight of the ball then this can be solved as below;
Using the equation
"y=y_i+V_{iy}t+\\frac{1}{2}a_yt^2\\\\\n\\therefore\\ 0=4.3+(17.207)t+\\frac{1}{2}(-9.81)t^2\\\\\n(4.905)t^2-(17.207)t-4.3=0\\\\\nSolving\\ the\\ quadratic\\ equation\\ for\\ t\\ gives\\ t=3.742\\ sec\\\\\n\nii) Also,\\ the\\ range\\ of\\ the\\ golf\\ ball\\ can\\ be\\ determined\\ as\\ follows\\\\\n\\Delta\\ d_x=V_{ix}\\times\\ t=(24.57m\/s)(3.742sec)\\\\\n\\therefore\\ \\Delta\\ d_x=91.94m\\\\"
iii) We can equally determine the velocity for the golf ball the instant before the ball impacts the ground by;
"Here,\\ V_{fx}=V_{ix=24.57m\/s}\\\\\nwhile,\\ V_{iy}+a_yt=(17.207)+(-9.81)(3.742)=-19.5m\/s\\\\\nTherefore\\ V_f=\\sqrt(24.57)^2+(-19.5)^2\\\\\n=31.37m\/s"
Comments
Leave a comment