S o l u t i o n Solution S o l u t i o n G i v e n : y D = 4.3 m V i = 30 m / s a n d θ = 35 ° W h e r e = V i x = V i c o s θ = ( 30 m / s ) × C o s ( 35 ) ° = 24.57 m / s V ( i y ) = V i s i n θ = 30 m / s × s i n ( 35 ° ) = 17.207 m / s Given:\ y_D=4.3m\\
V_i=30m\ \ /s\ and\ \theta=35\degree\\
Where=V_{ix}=V_i\ cos\theta=(30m/s)\times\ Cos\ (35)\degree=24.57m/s\\
V_(iy)=V_i\ sin\theta=30m/s\times\ sin(35\degree)=17.207m/s G i v e n : y D = 4.3 m V i = 30 m / s an d θ = 35° Wh ere = V i x = V i cos θ = ( 30 m / s ) × C os ( 35 ) ° = 24.57 m / s V ( i y ) = V i s in θ = 30 m / s × s in ( 35° ) = 17.207 m / s
i) In case we want to determine the time of flight of the ball then this can be solved as below;
Using the equation
y = y i + V i y t + 1 2 a y t 2 ∴ 0 = 4.3 + ( 17.207 ) t + 1 2 ( − 9.81 ) t 2 ( 4.905 ) t 2 − ( 17.207 ) t − 4.3 = 0 S o l v i n g t h e q u a d r a t i c e q u a t i o n f o r t g i v e s t = 3.742 s e c i i ) A l s o , t h e r a n g e o f t h e g o l f b a l l c a n b e d e t e r m i n e d a s f o l l o w s Δ d x = V i x × t = ( 24.57 m / s ) ( 3.742 s e c ) ∴ Δ d x = 91.94 m y=y_i+V_{iy}t+\frac{1}{2}a_yt^2\\
\therefore\ 0=4.3+(17.207)t+\frac{1}{2}(-9.81)t^2\\
(4.905)t^2-(17.207)t-4.3=0\\
Solving\ the\ quadratic\ equation\ for\ t\ gives\ t=3.742\ sec\\
ii) Also,\ the\ range\ of\ the\ golf\ ball\ can\ be\ determined\ as\ follows\\
\Delta\ d_x=V_{ix}\times\ t=(24.57m/s)(3.742sec)\\
\therefore\ \Delta\ d_x=91.94m\\ y = y i + V i y t + 2 1 a y t 2 ∴ 0 = 4.3 + ( 17.207 ) t + 2 1 ( − 9.81 ) t 2 ( 4.905 ) t 2 − ( 17.207 ) t − 4.3 = 0 S o l v in g t h e q u a d r a t i c e q u a t i o n f or t g i v es t = 3.742 sec ii ) A l so , t h e r an g e o f t h e g o l f ba ll c an b e d e t er min e d a s f o ll o w s Δ d x = V i x × t = ( 24.57 m / s ) ( 3.742 sec ) ∴ Δ d x = 91.94 m
iii) We can equally determine the velocity for the golf ball the instant before the ball impacts the ground by;
H e r e , V f x = V i x = 24.57 m / s w h i l e , V i y + a y t = ( 17.207 ) + ( − 9.81 ) ( 3.742 ) = − 19.5 m / s T h e r e f o r e V f = ( 24.57 ) 2 + ( − 19.5 ) 2 = 31.37 m / s Here,\ V_{fx}=V_{ix=24.57m/s}\\
while,\ V_{iy}+a_yt=(17.207)+(-9.81)(3.742)=-19.5m/s\\
Therefore\ V_f=\sqrt(24.57)^2+(-19.5)^2\\
=31.37m/s Here , V f x = V i x = 24.57 m / s w hi l e , V i y + a y t = ( 17.207 ) + ( − 9.81 ) ( 3.742 ) = − 19.5 m / s T h ere f ore V f = ( 24.57 ) 2 + ( − 19.5 ) 2 = 31.37 m / s
Comments