Given: Radius of bearing "r=20cm,=0.2m"
mass of bearing "m=0.2kg"
Viscosity of liquid "\\eta=1.2\\times10^{-6} Nsm^{-1}"
To find: Terminal velocity =?
Solution: we know that,
Mass =volume "\\times" density
"0.2=\\dfrac{4}{3}\\pi(0.2)^3\\times" Density
"\\Rightarrow" Density"\\rho=\\dfrac{3}{4\\pi\\times 0.04}" =5.965kg/"m^3"
Terminal velocity is given by-
"v_t=\\dfrac{2gr^2}{9\\eta}\\rho"
"\\Rightarrow v_t=\\dfrac{2\\times 9.8\\times (0.2)^2\\times 5.965}{9\\times 1.2\\times 10^{-6}}"
"\\Rightarrow v_t=\\dfrac{4.646\\times 10^6}{10.8}=0.43\\times 10^6ms^{-1}"
Hence the terminal velocity of object is "0.43\\times 10^6ms^{-1}"
Comments
Leave a comment