Let us assume v=c1e1+c2e2+c3e3.v=c_1e_1 + c_2e_2 + c_3e_3.v=c1e1+c2e2+c3e3. We may write a linear system for every coordinate:
{1=c1+c2+2c3,−2=c1+2c2−c3,5=c1+3c2+c3.\begin{cases} 1 = c_1+c_2+2c_3, \\ -2 = c_1+2c_2-c_3, \\ 5=c_1+3c_2+c_3. \end{cases}⎩⎨⎧1=c1+c2+2c3,−2=c1+2c2−c3,5=c1+3c2+c3.
We should solve this linear system and get c1=−6, c2=3, c3=2.c_1 = -6, \; c_2 = 3, \; c_3 =2.c1=−6,c2=3,c3=2.
Therefore, v=−6e1+3e2+2e3.v = -6e_1+3e_2+2e_3.v=−6e1+3e2+2e3.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments