Question #141739
Write down expectation value of 1/r for hydrogen atom.
1
Expert's answer
2020-11-10T07:08:23-0500

We will be evaluating the expectation value using the Virial Theorem.

We will be using the expression for Energy of the nth energy level for Hydrogen Atom:


En=m22n2(e24πϵ0)2E_n=-\frac{m}{2\hbar ^2n^2}\left(\frac{e^2}{4\pi\epsilon_0}\right)^2

For Hydrogen, 


V=e24πϵ0rV=-\frac{e^2}{4\pi\epsilon_0r}

For 3-dimensions Virial Theorem can be written as:


2T=rdVdr2\left\lang T\right\rangle=\left\lang r\frac{dV}{dr}\right\rangle

Plugging the value of V in the above equation, we get


2T=e24πϵ0r=VEn=T+V2En=V2\left\lang T\right\rangle=\frac{e^2}{4\pi\epsilon_0r}=-\left\lang V\right\rangle\\E_n=\left\lang T\right\rangle+\left\lang V\right\rangle\to 2E_n=\left\lang V\right\rangle

Now plugging the expression of Energy for Hydrogen in the above equation, we get


2m22n2(e24πϵ0)2=e24πϵ01r-2\frac{m}{2\hbar ^2n^2}\left(\frac{e^2}{4\pi\epsilon_0}\right)^2=-\frac{e^2}{4\pi\epsilon_0}\left\lang \frac{1}{r}\right\rangle


1r=me24πϵ0n2\left\lang \frac{1}{r}\right\rangle=\frac{me^2}{4\pi\epsilon_0\hbar n^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS