We will be evaluating the expectation value using the Virial Theorem.
We will be using the expression for Energy of the nth energy level for Hydrogen Atom:
"E_n=-\\frac{m}{2\\hbar ^2n^2}\\left(\\frac{e^2}{4\\pi\\epsilon_0}\\right)^2" For Hydrogen,
"V=-\\frac{e^2}{4\\pi\\epsilon_0r}" For 3-dimensions Virial Theorem can be written as:
"2\\left\\lang T\\right\\rangle=\\left\\lang r\\frac{dV}{dr}\\right\\rangle" Plugging the value of V in the above equation, we get
"2\\left\\lang T\\right\\rangle=\\frac{e^2}{4\\pi\\epsilon_0r}=-\\left\\lang V\\right\\rangle\\\\E_n=\\left\\lang T\\right\\rangle+\\left\\lang V\\right\\rangle\\to 2E_n=\\left\\lang V\\right\\rangle" Now plugging the expression of Energy for Hydrogen in the above equation, we get
"-2\\frac{m}{2\\hbar ^2n^2}\\left(\\frac{e^2}{4\\pi\\epsilon_0}\\right)^2=-\\frac{e^2}{4\\pi\\epsilon_0}\\left\\lang \\frac{1}{r}\\right\\rangle"
"\\left\\lang \\frac{1}{r}\\right\\rangle=\\frac{me^2}{4\\pi\\epsilon_0\\hbar n^2}"
Comments
Leave a comment