A 75 kg box encounters 10 N of friction and slides down a hall with an acceleration of 3.60 m/s2. Find the coefficient of kinetic between the box and the floor.
Given,
Mass of block m=75kg
Force of friction "f_s=10N"
Acceleration of box a3.60m/"s^2"
Let "\\theta" be the angle of inclination
"\\therefore mgsin\\theta-f_s=ma"
"\\to 75\\times9.8\\times sin\\theta-10=75\\times3.60\\\\\\to735sin\\theta=10+270\\\\\\to735sin\\theta=280\\\\\\to sin\\theta=\\dfrac{280}{735}\\\\\\to sin\\theta=0.3809\\\\\\to\\theta=sin^{-1}(0.3809)\\\\\\to \\theta=28.38\\degree"
As we know frictional force
"f_s=u_s\\times R\\\\\\to10=u_k\\times mgcos\\theta\\\\\\to 10=u_k\\times 75\\times 9.8\\times cos22.38\\degree\\\\\\to 10=u_k\\times 679.63\\\\\\to u_k=\\dfrac{10}{679.63}\\\\\\to u_k=0.0147"
Hence the coefficient of kinetic friction is 0.0147
Comments
Leave a comment