q is the charge
a is the (magnitude) which is then squared
for "A_q," "E=\\frac{ke\\times3q}{a^{2}}\\times [cos(0), 0]" ,
"B_{q}, E= \\frac{ke\\times4q}{2a^{2}}\\times[ cos45, sin45]"
"C_{q}, E=\\frac{ke\\times3q}{a^{2}}\\times[0, sin90]"
i like using (i and j instead of x and y). Sum of the electric fields is
"E_{q} = \\frac{ke\\times q}{a^{2}}\\times(3i + (4cos45)i + 4sin45j + 3j"
"\\frac{ke\\times q }{a^{2}}\\times(5.828i + 5.828j)"
"\\frac{ke\\times q }{a^{2}}\\times8.24"
"tan\\theta = \\frac{opposite}{adjacent}= \\frac{5.828}{5.828}=1"
"tan^{-1}1=45^{0}"
(b) The total electric force on q is "\\frac{ke\\times q }{a^{2}}\\times(8.28)" at an angle of "45^{o}"
Comments
Leave a comment