The maximum speed with which you can throw a stone is about 25 m/s (a professional baseball pitcher can do much better than this).Can you hit a window 50 m away and 13 m up from the point where the stone leaves your hand? What is the maximum height of a window you can hit at this direction?
"x=vtcos\u03b1 \\Rightarrow t=\\frac{x}{vcos\u03b1}",
"y=vtsin\u03b1-\\frac{gt^2}{2}=v\\frac{x}{vcos\u03b1}sin\u03b1-\\frac{gx^2}{2v^2cos^2\u03b1}=xtan\u03b1-\\frac{g}{2v^2cos^2\u03b1}x^2" - the equation of the parabola.
"y_{\\alpha}^{'}=\\frac{x}{cos^2\u03b1}-\\frac{gx^2}{2v^2}\\cdot\\frac{2sin\u03b1}{cos^3\u03b1}=\\frac{x}{cos^2\u03b1}\\cdot (1-\\frac{gxtan\u03b1}{v^2}),"
"y_{\\alpha}^{'}=0 \\Rightarrow 1-\\frac{gxtan\u03b1}{v^2}=0 \\Rightarrow tan\u03b1=\\frac{v^2}{gx},"
"v=25 (\\frac{m}{s}), x=50 (m), tan\u03b1=\\frac{25^2}{10\\cdot50}=\\frac{5}{4} \\Rightarrow cos^2\u03b1=\\frac{1}{1+tan^2\u03b1}=\\frac{1}{1+\\frac{25}{16}}=\\frac{16}{41}".
"y=50\\cdot\\frac{5}{4}-\\frac{10\\cdot50^2}{2\\cdot25^2\\cdot\\frac{16}{41}}=\\frac{50\\cdot5}{4}-\\frac{5\\cdot4\\cdot41}{16}=\\frac{250}{4}-\\frac{205}{4}=\\frac{45}{4}=11.25(m)" - the maximum height of a window at the distance 50 m.
It means that we can't hit the window on a height of 13 m.
Comments
Leave a comment