Solution.
The task is shown in the following picture:
If we represent the motion of the aircraft as a vector "\\vec a" , the wind as a vector "\\vec b" and the new speed and direction of the aircraft as a vector "\\vec c" then:
"\\vec c=\\vec a+\\vec b" .
Find projections of the vectors on the axis x and y:
"x_{\\vec a}=300;" "y_{\\vec a}=0."
"x_{\\vec b}=100\\cdot cos(30\\degree)=100\\frac{\\sqrt{3}}{2}=50\\sqrt{3};" "y_{\\vec b}=100\\cdot sin(30\\degree)=100\\cdot\\frac{1}{2}=50."
and "x_{\\vec c}=x_{\\vec a}+x_{\\vec b}=300+50\\sqrt{3}\\approx386.60;" "y_{\\vec c}=y_{\\vec a}+y_{\\vec b}=0+50=50."
Find the length of the vector "\\vec c" :
"|\\vec c|=\\sqrt{x_{\\vec c}^2+y_{\\vec c}^2}\\approx\\sqrt{386.60^2+50^2}\\approx389.82" Km/h.
Find the angle γ:
"\u03b3=arcsin(\\frac{y_{\\vec c}}{|\\vec c|})\\approx arcsin(\\frac{50}{389.82})\\approx arcsin(0.1283)\\approx7.37\\degree" .
Answer: the new speed and direction of the aircraft is 389.82 Km/h toward the direction 7.37° north of east.
Comments
Leave a comment