Question #135151
find moment of inertia of a circular ring about x-axis.
1
Expert's answer
2020-09-29T09:42:53-0400

Explanations & Calculations





  • Moment of inertia (I) is calculated by the relationship I=r2δmI = \int r^2\delta m about the axis in consideration.

When the x axis lies on the middle, (perpendicular to the plane of the ring) as the first figure,

  • Consider a small segment of mass δm\small \delta m of the ring then,

I1=r2δm=r20Mδm=r2(M0)=Mr2\qquad\qquad \begin{aligned} \small I_1 &= \small \int r^2 \delta m\\ &= \small r^2\int_{0}^M \delta m\\ &= \small r^2 (M-0)\\&= \small Mr^2 \end{aligned} : distance to the axis from each δm\small \delta m is the same ; r

When the x axis lies on a diameter of the ring consider a δm1\small \delta m_1 and linear mass density (ρ=M2πr\small \rho = \frac{M}{2 \pi r} ). Then,

δm1=ρδl=ρrδθ(S=rθ)I2=y2δm=(rsinθ)2×ρrδθ=r3ρ02πsin2θδθ=r3ρ02π1cos2θ2δθ=r3ρ2[θsin2θ2]02π=r32×M2πr×2π=Mr22\qquad\qquad \begin{aligned} \small \delta m_1 &= \small \rho \delta l=\rho r\delta \theta\cdots (\because S=r\theta)\\ \small I_2 &= \small \int y^2 \delta m\\ &= \small \int (r\sin\theta)^2 \times \rho r\delta \theta \\ &= \small r^3\rho \int_{0}^{2\pi} \sin^2\theta \delta \theta\\ &= \small r^3\rho \int_{0}^{2\pi} \frac{1-\cos2\theta}{2} \delta \theta \\ &= \small \frac{r^3\rho}{2} \Bigg[\theta-\frac{\sin2 \theta}{2} \Bigg]_{0}^{2\pi}\\ &= \small \frac{r^3}{2}\times \frac{M}{2\pi r}\times 2\pi\\ &= \small \frac{Mr^2}{2} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS