Newton's second law gives us
"ma = F_G"
"\\displaystyle m \\omega^2 r = \\frac{GmM}{r^2}"
"\\displaystyle (\\frac{2\\pi}{T})^2 r = \\frac{GM}{r^2}"
"\\displaystyle T^2 = \\frac{4 \\pi^2}{GM} r^3"
If object is a sphere, then "M = \\rho \\cdot \\frac{4 \\pi}{3} R^3" . Particle moves close to the surface, so"r= R+h \\approx R"
"\\displaystyle T^2 = \\frac{3\\cdot4 \\pi^2}{G \\rho 4 \\pi R^3} R^3 = \\frac{3 \\pi}{G \\rho}"
"\\displaystyle T = \\sqrt{\\frac{3\\pi}{G\\rho}}= \\sqrt{\\frac{3 \\cdot \\pi}{6.67 \\cdot 10^{-11} \\cdot 10^3}}=11\\,887 \\; s = 198 \\, m \\; 7\\,s = 3\\, h \\; 18\\,m\\;7\\,s"
Answer: "3\\, h \\; 18\\,m\\;7\\,s"
Comments
Leave a comment