A unit weight is
γ=PV=57⋅103 Nm3\displaystyle \gamma =\frac{P}{V} =57 \cdot 10^3\; \frac{N}{m^3}γ=VP=57⋅103m3N
By definition, weight P=mg⇒m=PgP = mg \Rightarrow m = \displaystyle \frac{P}{g}P=mg⇒m=gP
Mass density is
ρ=mV=PgV=PV⋅1g=γg=57⋅1039.81=5.81⋅103 kgm3\displaystyle \rho = \frac{m}{V} = \frac{P}{gV} = \frac{P}{V} \cdot \frac{1}{g} = \frac{\gamma}{g} = \frac{57 \cdot 10^3}{9.81} = 5.81 \cdot 10^3 \; \frac{kg}{m^3}ρ=Vm=gVP=VP⋅g1=gγ=9.8157⋅103=5.81⋅103m3kg
Answer: 5.81⋅103 kgm35.81 \cdot 10^3 \; \frac{kg}{m^3}5.81⋅103m3kg.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments