Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small F &= \\small ma\\\\\n\\small kx\\cos30^0+mg\\cos60^0 -P &= \\small mr\\omega^2\\\\\n\\small P&= \\small \\frac{\\sqrt3}{2}kx+\\frac{mg}{2}\\cdots(1)\n\\end{aligned}" : no "\\small \\omega" at the very beginning
"\\qquad\\qquad\n\\begin{aligned}\n\\small x&= \\small 2R\\cos30-R \\\\\n&= \\small (\\sqrt3-1)R\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small kx&= \\small \\frac{(2+\\sqrt3)mg}{\\sqrt3R}\\times (\\sqrt3-1)R\\\\\n&= \\small \\frac{(\\sqrt3+1)mg}{\\sqrt3}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small P &= \\small \\frac{\\sqrt3}{2}\\times\\frac{(\\sqrt3+1)mg}{\\sqrt3}+\\frac{mg}{2}\\\\\n&= \\small \\frac{(\\sqrt3+2)mg}{2}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\\small f_t&= \\small mg\\sin60+kx\\sin30\\\\\n&= \\small \\frac{\\sqrt3 mg}{2}+\\frac{(\\sqrt3+1)mg}{\\sqrt3}\\times \\frac{1}{2}\\\\\n&= \\small \\frac{\\sqrt3(\\sqrt3+4)mg}{6}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small f_t&=\\small ma_t\\\\\n\\small a_t &= \\small \\frac{\\sqrt3(\\sqrt3+4)g}{6}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\rightarrow a&= \\small 2a_t\\cos30\\\\\n&= \\small \\frac{(\\sqrt3+4)g}{2}\n\\end{aligned}"
Comments
Leave a comment