Question #132822
write the relation between phase and group velocity
1
Expert's answer
2020-09-15T11:29:54-0400

Phase velocity(wave velocity) is the velocity of monochromatic wave.Velocity propagated when a single wave of definite wave length travel in a medium.

Given by;

VpV\scriptscriptstyle p =ωk\dfrac{\omega}{k} where k is a constant.

Group velocity: velocity of a number of wave of different wavelength moving with a different velocity in medium.

Given by:

VgV\scriptscriptstyle g =dωdk\dfrac{d\scriptscriptstyle \omega}{d\scriptscriptstyle k}

Where wave frequency is given by;

ω\omega =kVpV\scriptscriptstyle p

Differentiating wave frequency with respect to k;

VgV\scriptscriptstyle g =ddk(\dfrac{d }{d\scriptscriptstyle k}( KVpKV\scriptscriptstyle p )

VgV\scriptscriptstyle g = VpV\scriptscriptstyle p +kdVpdkk\dfrac{dV\scriptscriptstyle p}{d\scriptscriptstyle k}

Taking k =2πλ\dfrac{2\pi }{\lambda}

\because dkdλ\dfrac{d\scriptscriptstyle k}{d\scriptscriptstyle\lambda} =2πλ2-\dfrac{2\pi }{\lambda^2}

dkd\scriptscriptstyle k =kdλλ-k\dfrac{d\lambda }{\lambda}

VgV\scriptscriptstyle g =VpV\scriptscriptstyle p λdVpdλ-\lambda\dfrac{dV\scriptscriptstyle p }{d\lambda}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS