Explanations & Calculations
Assume the plank is on a frictionless surface & the length of the plank is L ( m ) \small L\,\,(m) L ( m ) . To evaluate this question with respect to the Earth's frame of refence
Take the velocity of the ball relative to the plank as V 1 → \small \overrightarrow { V_1} V 1 Velocity of the plank relative to earth as V ← \small \overleftarrow{V} V Now the velocity of the ball relative to earth is V b , e → = V b , p → + V p , e → = V 1 + ( − V ) = V 1 − V → \qquad\qquad
\begin{aligned}
\small \overrightarrow{V_{b,e}}&= \small\overrightarrow{ V_{b,p}} +\overrightarrow{V_{p,e}}\\
&= \small V_1+ (-V)\\
&= \small \overrightarrow{V_1-V}
\end{aligned} V b , e = V b , p + V p , e = V 1 + ( − V ) = V 1 − V
By conservation of linear momentum, 0 = 20 × ( V 1 − V ) − 60 × V V 1 V = 4 \qquad\qquad
\begin{aligned}
\small 0 &= \small 20\times (V_1-V) - 60\times V\\
\small \frac{V_1}{V}&= \small 4
\end{aligned} 0 V V 1 = 20 × ( V 1 − V ) − 60 × V = 4
Now if the plank moves distance x \small x x , the ball may move L − x \small L-x L − x then, t = x V = L − x V 1 − V x L − x = V V 1 − V = 1 3 ∴ x = L 4 ( m ) \qquad\qquad
\begin{aligned}
\small t = \frac{x}{V}&= \small \frac{L-x}{V_1-V}\\
\small \frac{x}{L-x} &= \small \frac{V}{V_1-V}= \frac{1}{3}\\
\therefore x &= \small \bold{\frac{L}{4}\,\,(m)}
\end{aligned} t = V x L − x x ∴ x = V 1 − V L − x = V 1 − V V = 3 1 = 4 L ( m )
To evaluate with respect to the plank's frame of reference
Consideration of the velocities are the same as above & that of plank's is always the same. By conservation of linear momentum to the right side 0 = 20 V 1 − ( 20 + 60 ) V V 1 V = 4 \qquad\qquad
\begin{aligned}
\small 0 &= \small 20V_1-(20+60)V\\
\small \frac{V_1}{V}&= \small 4\\
\end{aligned} 0 V V 1 = 20 V 1 − ( 20 + 60 ) V = 4
Now time taken for the ball to reach the other end of the plank (this is relative to the plank) is the same for plank to move a distance of x 1 \small x_1 x 1 Then, t 1 = L V 1 = x V x = L V V 1 = L × 1 4 = L 4 ( m ) \qquad\qquad
\begin{aligned}
\small t_1= \frac{L}{V_1}&= \small \frac{x}{V}\\
\small x &= \small L\frac{V}{V_1}=L\times\frac{1}{4}\\
&=\small \bold{\frac{L}{4} \,\,(m)}
\end{aligned} t 1 = V 1 L x = V x = L V 1 V = L × 4 1 = 4 L ( m )
Comments