Explanations & Calculations
To evaluate this question with respect to the Earth's frame of refence
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\overrightarrow{V_{b,e}}&= \\small\\overrightarrow{ V_{b,p}} +\\overrightarrow{V_{p,e}}\\\\\n&= \\small V_1+ (-V)\\\\\n&= \\small \\overrightarrow{V_1-V}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small 0 &= \\small 20\\times (V_1-V) - 60\\times V\\\\\n\\small \\frac{V_1}{V}&= \\small 4\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small t = \\frac{x}{V}&= \\small \\frac{L-x}{V_1-V}\\\\\n\\small \\frac{x}{L-x} &= \\small \\frac{V}{V_1-V}= \\frac{1}{3}\\\\\n\\therefore x &= \\small \\bold{\\frac{L}{4}\\,\\,(m)}\n\\end{aligned}"
To evaluate with respect to the plank's frame of reference
"\\qquad\\qquad\n\\begin{aligned}\n\\small 0 &= \\small 20V_1-(20+60)V\\\\\n\\small \\frac{V_1}{V}&= \\small 4\\\\\n\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small t_1= \\frac{L}{V_1}&= \\small \\frac{x}{V}\\\\\n\\small x &= \\small L\\frac{V}{V_1}=L\\times\\frac{1}{4}\\\\\n&=\\small \\bold{\\frac{L}{4} \\,\\,(m)}\n\\end{aligned}"
Comments
Leave a comment