solution:
given data:-
rest mass of electron(m0 )=9.1 × 1 0 − 31 k g 9.1\times10^{-31}kg 9.1 × 1 0 − 31 k g
charge of electron(q)=1.6 × 1 0 − 19 C 1.6\times10^{-19}C 1.6 × 1 0 − 19 C
speed of electrone(v)=0.8c
relation between kinetic energy and potential difrence is
K E = q Δ V KE=q\Delta V K E = q Δ V .........eq.1
and
K E = m 0 c 2 1 − v 2 c 2 − m 0 c 2 . . . . . . e q . 2 KE=\frac{m_0c^2}{\sqrt1-\frac{v^2}{c^2}}-m_0c^2 ......eq.2 K E = 1 − c 2 v 2 m 0 c 2 − m 0 c 2 ...... e q .2
using equation 1 and 2 we get
potential difference can be written as
q Δ V = m 0 c 2 1 − v 2 c 2 − m 0 c 2 q\Delta V=\frac{m_0c^2}{\sqrt1-\frac{v^2}{c^2}}-m_0c^2 q Δ V = 1 − c 2 v 2 m 0 c 2 − m 0 c 2
Δ V = m 0 c 2 q ( 1 1 − v 2 c 2 − 1 ) \Delta V=\frac{m_0c^2}{q}(\frac{1}{\sqrt{1-\frac{v^2}{c^2}}}-1) Δ V = q m 0 c 2 ( 1 − c 2 v 2 1 − 1 )
by putting the value of m0 , c, v and q
Δ V = 9.1 × 1 0 − 31 × 9 × 1 0 16 1.6 × 1 0 − 19 ( 1 1 − ( 0.64 ) c 2 c 2 − 1 ) \Delta V=\frac{9.1\times10^{-31}\times9\times10^{16}}{1.6\times10^{-19}}(\frac{1}{\sqrt{1-\frac{(0.64)c^2}{c^2}}}-1) Δ V = 1.6 × 1 0 − 19 9.1 × 1 0 − 31 × 9 × 1 0 16 ( 1 − c 2 ( 0.64 ) c 2 1 − 1 )
Δ V = 51.1 × 1 0 4 × 2 3 \Delta V=51.1\times10^4\times\frac{2}{3} Δ V = 51.1 × 1 0 4 × 3 2
= 34.06 × 1 0 4 =34.06\times10^4 = 34.06 × 1 0 4
Δ V = 341 × 1 0 3 v o l t s \fcolorbox{red}{yellow}{$\Delta V=341\times10^3 volts$} Δ V = 341 × 1 0 3 v o lt s
therefore potential difference for this electron is 341 KV.
Comments