Firs, let's find the distance CE=BO. From the triangle △AOB expressing the side BO, obtain:
BO=tanθAB=hcotθ=CE Now let's find EF. According to the Snell's law:
n1sinθ1=n2sinθ2sinθ2=n2n1sinθ1θ2=arcsin(n2n1sinθ1) From the triangle △ODF:
EF=OEtanθ2=dtanθ2=dtan(arcsin(n2n1sinθ1)) Finally:
D=CE+EF=hcotθ+dtan(arcsin(n2n1sinθ1)) Obtain the following number:
D=2.5cot38°+3.75tan(arcsin(1.331⋅sin52°))≈5.83m Answer. 5.83 m.
Comments