Firs, let's find the distance "CE = BO". From the triangle "\\triangle AOB" expressing the side "BO", obtain:
"BO = \\dfrac{AB}{\\tan\\theta} =h\\cot\\theta = CE" Now let's find "EF". According to the Snell's law:
"n_1\\sin\\theta_1 = n_2\\sin\\theta_2\\\\\n\\sin\\theta_2 = \\dfrac{n_1\\sin\\theta_1}{n_2}\\\\\n\\theta_2 = \\arcsin\\left(\\dfrac{n_1\\sin\\theta_1}{n_2}\\right)" From the triangle "\\triangle ODF":
"EF = OE\\tan\\theta_2 = d\\tan\\theta_2 = d\\tan\\left(\\arcsin\\left(\\dfrac{n_1\\sin\\theta_1}{n_2}\\right) \\right)" Finally:
"D = CE + EF = h\\cot\\theta + d\\tan\\left(\\arcsin\\left(\\dfrac{n_1\\sin\\theta_1}{n_2}\\right) \\right)" Obtain the following number:
"D = 2.5\\cot38\\degree + 3.75\\tan\\left(\\arcsin\\left(\\dfrac{1\\cdot\\sin52\\degree}{1.33}\\right) \\right) \\approx 5.83m" Answer. 5.83 m.
Comments
Leave a comment