y=Acos(ωt+ϕ)y=A\cos(\omega t+\phi)y=Acos(ωt+ϕ)
t=0→y=0.5t=0 \to y=0.5t=0→y=0.5
So,
ϕ=0\phi=0ϕ=0
y=0.5cos(2πνt)=0.5cos(8πt)y=0.5\cos(2\pi\nu t)=0.5\cos(8\pi t)y=0.5cos(2πνt)=0.5cos(8πt)
If y=0y=0y=0 then t0=1/16s=0.037st_0=1/16s=0.037st0=1/16s=0.037s
If y=0.3y=0.3y=0.3 then t=18πcos−1(0.6)=0.0625st=\frac{1}{8\pi}\cos^{-1}(0.6)=0.0625st=8π1cos−1(0.6)=0.0625s
Finally
Δt=0.0625−0.037=0.0255s\Delta t=0.0625-0.037=0.0255sΔt=0.0625−0.037=0.0255s
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments