Explanations & Calculations
first consider the angle created by the velocity vector U and the x axis.
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\alpha_1 &= \\small \\tan^{-1}(\\frac{5}{10}) = 26.565^0 \n\\end{aligned}"
Secondly the line of centers, if it makes an angle of "\\alpha_2" with x axis,
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\alpha_2&= \\small \\tan^{-1}(\\frac{4}{3})= 53.130^0\n\\end{aligned}"
Therefore,
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\theta & = \\small \\alpha_2 -\\alpha_1\\\\\n&= \\small 26.565^0\n\\end{aligned}"
a) ..................................................................................................................................
1) "\\qquad\\qquad\n\\begin{aligned}\n\\small 2mU\\cos\\theta+0 &= \\small 2m V\\cos x + mV_2\\\\\n\\small 2U\\cos\\theta &= \\small 2 V \\cos x +V_2 \\cdots\\cdots(1)\\\\\n\\end{aligned}"
2) "\\qquad\\qquad\n\\begin{aligned}\n\\small V\\cos x -V_2 &= \\small-e\\,( U \\cos \\theta -0) \\\\\n\\small -e\\,U \\cos \\theta &= \\small V\\cos x -V_2 \\cdots\\cdots(2)\n\\end{aligned}"
Adding (1) & (2),
3) "\\qquad\\qquad\n\\begin{aligned}\n\\small U\\cos \\,\\theta(2-e) &= \\small 3V \\cos x\\cdots \\cdots(3)\n\\end{aligned}"
4) Due to the absence of any external force perpendicular to the line of centers, velocities along that direction, is kept constant during the collision. Therefore,
"\\qquad\\qquad\n\\begin{aligned}\n\\small U \\sin \\theta &= \\small V \\sin x \\cdots\\cdots (4)\n\\end{aligned}"
Now (4) /(3),
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{\\tan \\theta}{(2-e)} &= \\small \\frac{\\tan x}{3}\\\\\n\\small \\frac{\\tan(26.565)}{(2-e)} &= \\small \\frac{\\tan x}{3}\\\\\n\\small \\frac{1}{2(2-e)} &= \\small \\frac{\\tan x}{3}\\\\\n\\small \\bold{ (4-2e)\\tan x} &= \\small \\bold{3} \\cdots\\cdots(5)\n\\end{aligned}"
b)................................................................................................................................
"\\qquad\\qquad\n\\begin{aligned}\n\\small tan x & = \\small \\frac{3}{(4-2e)}\n\\end{aligned}" & "\\small 0 \\le e \\le 1"
Therefore "\\tan x" maximum = "\\frac{3}{2}"
Therefore, "\\tan x" minimum = "\\frac{3}{4}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\bold{\\frac{3}{4} \\le \\tan x \\le \\frac{3}{2}}\n\\end{aligned}"
c).................................................................................................................................
"\\qquad\\qquad\n\\begin{aligned}\n\\small 4 -2e &= 3\\\\\n\\small e &= \\small \\frac{1}{2} =0.5\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small 5\\sqrt5 \\times \\sin(26.565) &= \\small V \\sin (45) \\\\\n\\small V &= \\small \\bold{7.07 ms^{-1}}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small 2\\times 5\\sqrt5\\cos(26.565) &= \\small 2\\times 7.07 \\cos (45) +V_2\\\\\n \\small V_2 &= \\small \\bold{10.00 ms^{-1}}\n\\end{aligned}"
Comments
Leave a comment