Solution.1) the area of a square S=L2i=−SR×dBdt;i=−L2R×a;2) the current is constant,soP=I2R orP=a2R3) The current flows counter clockwise.the induction current createsa field directed against the external field.4)Ei=−S×dBdt×n;Ei=−π×d24×dBdt×n;Ei=−0.0314×10×50=15.7VSolution.\\1)\;the\; area\; of\; a\; square\;S=L^2\\i=-\frac{S}{R}\times\frac{dB}{dt};\\i=-\frac{L^2}{R}\times a ;\\2)\;the \;current\; is \;constant, so\\P=I^2R\;orP=a^2R\\3)\;The \;current\; flows\; counter\;clockwise.\\the\; induction\; current\; creates \\a\; field\; directed \;against\; the\; external\; field.\\4)E_i=-S\times\frac{dB}{dt}\times n;\\E_i=-\frac{\pi\times d^2}{4}\times\frac{dB}{dt}\times n;\\E_i=-0.0314\times 10\times 50=15.7VSolution.1)theareaofasquareS=L2i=−RS×dtdB;i=−RL2×a;2)thecurrentisconstant,soP=I2RorP=a2R3)Thecurrentflowscounterclockwise.theinductioncurrentcreatesafielddirectedagainsttheexternalfield.4)Ei=−S×dtdB×n;Ei=−4π×d2×dtdB×n;Ei=−0.0314×10×50=15.7V
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments