Solution.
v;v;v;
a. gy=vy−v0yt ⟹ t=vy−v0ygy;g_y=\dfrac{v_y-v_{0y}}{t}\implies t=\dfrac{vy-v_{0y}}{g_y};gy=tvy−v0y⟹t=gyvy−v0y;
vy=0,t=−v0ygy;v_y=0, t=\dfrac{-v_{0y}}{g_y};vy=0,t=gy−v0y;
b. hy=vy2−v0y22gy;h_y=\dfrac{vy^2-v_{0y}^2}{2g_y};hy=2gyvy2−v0y2;
vy=0,hy=−v0y22gy;v_y=0, h_y=\dfrac{-v_{0y}^2}{2g_y};vy=0,hy=2gy−v0y2;
c. tmax=2⋅(−v0ygy)=−2v0ygy;t_{max}=2\sdot(-\dfrac{v_{0y}}{g_y})=-\dfrac{2v_{0y}}{g_y};tmax=2⋅(−gyv0y)=−gy2v0y;
Answer: a. t=−v0ygy;t=\dfrac{-v_{0y}}{g_y};t=gy−v0y;
b. hy=−v0y22gy;h_y=\dfrac{-v_{0y}^2}{2g_y};hy=2gy−v0y2;
c. tmax=−2v0ygy;t_{max}=-\dfrac{2v_{0y}}{g_y};tmax=−gy2v0y;
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments