Question #118531
A flywheel has a moment of inertia of 1.6 × 10−3 kg.m2
. When a constant torque is
applied, it reaches an angular velocity of 1200 rev/min in 15 s. Assuming it started from
rest, find:
i) the angular acceleration
ii) the unbalanced torque applied
iii) the angle turned through 15 s
iv) the work done on the flywheel by the torque
1
Expert's answer
2020-05-27T10:50:44-0400

Solution.

I=1.6103kg.m2;I=1.6\sdot10^{-3}kg.m^2;

n=1200rev/min=20rev/s;n=1200rev/min=20rev/s;

t=15s;t=15s;

w_0=0;

i)α=Δwt;Δw=ww0;\alpha=\dfrac{\Delta w}{t}; \Delta w=w-w_0;

w=2πn;w=2\pi n;

w=23.14rad20rew/s=125.6rad/sw=2\sdot3.14rad\sdot20rew/s=125.6rad/s ;

α=125.6rad/s15s=8.37rad/s2;\alpha=\dfrac{125.6rad/s}{15s}=8.37rad/s^2;

ii) α=TI;    T=αI;\alpha=\dfrac{T}{I};\implies T=\alpha I;

T=8.37rad/s21.6103kg.m2=0.013kg.m2/s2;T=8.37rad/s^2\sdot1.6\sdot10^{-3} kg.m^2=0.013kg.m^2/s^2;

iii)θ=θ0+w0t+αt22;\theta=\theta_0+w_0t+\dfrac{\alpha t^2}{2};

θ=8.37rad/s2(15s)22=941.6rad;\theta=\dfrac{8.37rad/s^2\sdot(15s)^2}{2}=941.6rad;

iv)W=12Iw212Iw02;W=\dfrac{1}{2}Iw^2-\dfrac{1}{2}Iw_0^2;

W=121.6103kg.m2(125.6rad/s)2=W=\dfrac{1}{2}\sdot1.6\sdot10^{-3}kg.m^2\sdot(125.6rad/s)^2=

=12.62J;=12.62J;

Answer: i)α=8.37rad/s2;\alpha=8.37rad/s^2;

ii)T=0.013kg.m2/s2;T=0.013kg.m^2/s^2;

iii)θ=941.6rad;\theta=941.6rad;

iv)W=12.62J.W=12.62J.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS