Question #118396
A solid shaft of 10cm diameter transmits 74 kW at 150 rev/min. Calculate (a) the
torque on the shaft, (b) the maximum shear stress developed, (c) the angle of twist in a
length of 1.50m, and (d) the shear stress at a radius of 3cm. Take G = 8 MN/cm2
1
Expert's answer
2020-05-29T09:48:35-0400

a)


P=2πNT6074000=2π(150)T60P=\frac{2\pi NT}{60}\to 74000=\frac{2\pi (150)T}{60}

T=4711 NmT=4711\ Nm


b)


T=π16τd34711=π16τ(0.1)3T=\frac{\pi}{16}\tau d^3\to 4711=\frac{\pi}{16}\tau (0.1)^3

τ=24106Nm2\tau=24\cdot10^6\frac{N}{m^2}

c)


TJ=GθlTπ32d4=Gθl\frac{T}{J}=\frac{G\theta }{l}\to \frac{T}{ \frac{\pi}{32} d^4}=\frac{G\theta }{l}

4711π32(0.1)4=81010θ1.5\frac{4711}{ \frac{\pi}{32} (0.1)^4}=\frac{8\cdot 10^{10}\theta }{1.5}

θ=0.00899735 rad=0.5155°\theta=0.00899735\ rad=0.5155\degree

d)


T=π16τd4(2r)4d4711=π16τ0.14(0.06)40.1T=\frac{\pi}{16}\tau' \frac{d^4-(2r)^4}{d}\to 4711=\frac{\pi}{16}\tau' \frac{0.1^4-(0.06)^4}{0.1}

τ=2.76107Nm2\tau'=2.76\cdot10^7\frac{N}{m^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS