Given that, a body in simple harmonic motion with time period T=0.5s and and amplitude is A=1cm=10−2m .
The equation of simple harmonic motion will be,
y=Asin(T2πt)(♠)Let at t=t1 ,the position of the body from equilibrium is 2A ,thus from above equation we get,
2A=Asin(T2πt1)⟹sin(T2πt1)=21⟹T2πt1=6π⟹t1=12T(♣) Clearly, if we differentiate (♠) w.r.t time we get the expression for velocity of the body,thus
v=T2πAcos(T2πt) Hence,
<v>=t1−01∫0t1vdt⟹<v>=t1−01∫0t1T2πAcos(T2πt)dt⟹<v>=Tt12πA∫0t1cos(T2πt)dt⟹<v>=Tt12πA2πT[sin(T2πt)]0t1⟹<v>=t1Asin(6π)=2t1A=12cm/s
Comments