Given that, a body in simple harmonic motion with time period "T=0.5s" and and amplitude is "A=1cm=10^{-2}m" .
The equation of simple harmonic motion will be,
Let at "t=t_1" ,the position of the body from equilibrium is "\\frac{A}{2}" ,thus from above equation we get,
Clearly, if we differentiate "(\\spades)" w.r.t time we get the expression for velocity of the body,thus
Hence,
"<v>=\\frac{1}{t_1-0}\\int_{0}^{t_1}vdt\\\\\n\\implies <v>=\\frac{1}{t_1-0}\\int_{0}^{t_1}\\frac{2\\pi A}{T}\\cos(\\frac{2\\pi }{T}t)dt\\\\\n\\implies <v>=\\frac{2\\pi A}{Tt_1}\\int_{0}^{t_1}\\cos(\\frac{2\\pi }{T}t)dt\\\\\n\\implies <v>=\\frac{2\\pi A}{Tt_1}\\frac{T}{2\\pi}\\bigg[\\sin(\\frac{2\\pi }{T}t)\\bigg]_{0}^{t_1}\\\\\n\\implies <v>=\\frac{A}{t_1}\\sin(\\frac{\\pi }{6})=\\frac{A}{2t_1}=12cm\/s"
Comments
Leave a comment