Question #117966
A body is in simple harmonic motion with time period T=0.5s and amplitude A=1cm. Find the average velocity in the interval in which it moves from equilibrium position to half of its amplitude.
Ans 12cm/s
1
Expert's answer
2020-05-26T12:42:37-0400

Given that, a body in simple harmonic motion with time period T=0.5sT=0.5s and and amplitude is A=1cm=102mA=1cm=10^{-2}m .


The equation of simple harmonic motion will be,


y=Asin(2πTt)()y=A\sin(\frac{2\pi}{T}t)\hspace{1cm}(\spades)

Let at t=t1t=t_1 ,the position of the body from equilibrium is A2\frac{A}{2} ,thus from above equation we get,


A2=Asin(2πTt1)    sin(2πTt1)=12    2πTt1=π6    t1=T12()\frac{A}{2}=A\sin(\frac{2\pi}{T}t_1)\\ \implies \sin(\frac{2\pi}{T}t_1)=\frac{1}{2}\\ \implies \frac{2\pi}{T}t_1=\frac{\pi}{6}\\ \implies t_1=\frac{T}{12}\hspace{1cm}(\clubs)

Clearly, if we differentiate ()(\spades) w.r.t time we get the expression for velocity of the body,thus


v=2πATcos(2πTt)v=\frac{2\pi A}{T}\cos(\frac{2\pi }{T}t)

Hence,

<v>=1t100t1vdt    <v>=1t100t12πATcos(2πTt)dt    <v>=2πATt10t1cos(2πTt)dt    <v>=2πATt1T2π[sin(2πTt)]0t1    <v>=At1sin(π6)=A2t1=12cm/s<v>=\frac{1}{t_1-0}\int_{0}^{t_1}vdt\\ \implies <v>=\frac{1}{t_1-0}\int_{0}^{t_1}\frac{2\pi A}{T}\cos(\frac{2\pi }{T}t)dt\\ \implies <v>=\frac{2\pi A}{Tt_1}\int_{0}^{t_1}\cos(\frac{2\pi }{T}t)dt\\ \implies <v>=\frac{2\pi A}{Tt_1}\frac{T}{2\pi}\bigg[\sin(\frac{2\pi }{T}t)\bigg]_{0}^{t_1}\\ \implies <v>=\frac{A}{t_1}\sin(\frac{\pi }{6})=\frac{A}{2t_1}=12cm/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS