a) according to the third Kepler's law, the radius of orbit r and the period of rotation T are related by the expression
"\\dfrac{T^2}{r^3} = \\dfrac{4\\pi^2}{GM_{\\oplus}}" , where "M_{\\oplus}" is the Earth's mass. Therefore,
"r = \\sqrt[3]{\\dfrac{T^2GM_{\\oplus}}{4\\pi^2}} \\approx 42.2\\cdot10^3\\,\\mathrm{km}." The height is"h=r-R_{\\oplus} = 42.2\\cdot10^3\\,\\mathrm{km} - 6.4\\cdot10^3\\,\\mathrm{km} = 35.8\\cdot10^3\\,\\mathrm{km}" .
b) The velocity can be calculated as the ratio of the length of an orbit and the period
"v = \\dfrac{2\\pi r}{T} \\approx 3.07\\,\\mathrm{km\/s}" .
с) Let us calculate the period of the second satellite:
"\\dfrac{T_2^2}{T^2} = \\dfrac{(200+R_{\\oplus})^3}{r^3}."
So "T_2 = 5.33\\cdot10^3\\,\\mathrm{s}." The velocity "v_2" is
"v_2 = \\dfrac{2\\pi(200+R_{\\oplus})}{T_2} \\approx 7.78\\,\\mathrm{km\/s}." We can see that
"\\dfrac{v}{v_2} = \\dfrac{3.07}{7.78} \\approx 0.39."
Comments
Leave a comment