1) Let "t_1" be the time of acceleration, "t_2" be the time of constant velocity and "t_3" be the time of deceleration. When the train accelerates or decelerates, its velocity changes linearly. If the module of deceleration is twice the module of acceleration, then the time "t_3 = 0.5t_1" .
Next, "t_1+t_2+t_3 = 7~\\mathrm{min}" or "t_1+t_2+0.5t_1 = 420\\,\\mathrm{s}."
The total distance is the area under "v(t)" curve. It can be calculated as
"S = 0.5vt_1 + vt_2 + 0.5vt_3 = 0.75vt_1 + vt_2 = 7800\\,\\mathrm{m}."
We obtained a linear system
"\\begin{cases}\n1.5t_1+t_2 = 420,\\\\\n0.75\\cdot20\\cdot t_1 + 20t_2=7800.\n\\end{cases}"
Solving it, we get "t_1=40\\,\\mathrm{s}, \\;\\; t_2 = 360\\,\\mathrm{s}." Next, acceleration "a = \\dfrac{v-0}{t_1} = \\dfrac{20}{40}=0.5\\,\\mathrm{m}\/\\mathrm{s}^2" .
So the time of travelling with constant velocity is 360 s and the acceleration is 0.5 m/s2 .
2) "\\vec{r} = \\vec{a}\\cos \u03c9t + \\vec{b} \\sin \u03c9t," "\\dot{\\vec{r}} = -\\vec{a}\\omega\\sin\\omega t + \\vec{b}\\omega\\cos\\omega t."
a) We can see that if "t=0" , then "\\;\\; \\vec{r}=\\vec{a}, \\;\\; \\dot{\\vec{r}} = \\omega\\vec{b}, \\;\\; \\vec{r}\\cdot\\dot{\\vec{r}} = \\omega\\vec{a}\\vec{b}" , but if "\\omega t = 90^\\circ" , then "\\;\\; \\vec{r}=\\vec{b}, \\;\\; \\dot{\\vec{r}} = -\\omega\\vec{a}, \\;\\; \\vec{r}\\cdot\\dot{\\vec{r}} = -\\omega\\vec{a}\\vec{b}" , so "\\vec{r}\\cdot\\dot{\\vec{r}}" depends on time.
Let us calculate "\\vec{r}\\times\\dot{\\vec{r}}" :
"\\vec{r}\\times\\dot{\\vec{r}} = (\\vec{a}\\cos \u03c9t + \\vec{b} \\sin \u03c9t)\\times( -\\vec{a}\\omega\\sin\\omega t + \\vec{b}\\omega\\cos\\omega t) = 0 - \\omega \\vec{b}\\times\\vec{a}\\sin^2\\omega t + \\omega\\vec{a}\\times\\vec{b}\\cos^2\\omega t + 0 = \\omega \\vec{a}\\times\\vec{b}."
We can see that it doesn't depend on time.
b) "\\ddot{\\vec{r}} = -\\vec{a}\\omega^2\\cos\\omega t - \\vec{b}\\omega^2\\sin\\omega t = -\\omega^2\\vec{r}" , so two vectors are directed oppositely and the acceleration is proportional to "\\vec{r}" with coefficient "-\\omega^2."
Comments
Leave a comment