6. An airplane whose air speed is 650km/h is supposed to fly in straight path 35° north of
east. But a steady 95 km/h wind is blowing from north. In what direction should the
plane head and what is the plane resultant speed?
1
Expert's answer
2020-05-12T09:59:10-0400
This problems is related to the notion of addition of vectors.
The resultant velocity vrel=vwind+vplane. We know that the wind counteracts to the movement of
the plane, so the resultant velocity will be smaller than the initial velocity vplane . Also, we conclude that
the angle in question should be larger than 35∘ .
The angle between vwind and vres should be α=90∘+35∘=125∘. We may calculate the angle β between vres and vplane using the law of sines
sinαvplane=sinβvwind.
Therefore, sinβ=vplanevwindsinα=65095sin125∘≈0.12,β=6.9∘. The third angle γ between vwind and vplane is γ=180∘−α−β=180∘−125∘−6.9∘=48.1∘.
Therefore, we may calculate vres using the law of cosines
vres2=vwind2+vplane2−2vwindvplanecosγ.
vres≈590km/h.
The angle in question is 90∘−γ=90∘−48.1=41.9∘ north of east.
"assignmentexpert.com" is professional group of people in Math subjects! They did assignments in very high level of mathematical modelling in the best quality. Thanks a lot
Comments