Solution.
"\\tau =1.50\\sdot10^{-16}s;"
"\\tau_0 =0.90\\sdot10^{-16}s;"
"c = 3\\sdot10^8m\/s;"
"\\tau= \\dfrac{\\tau_0}{\\sqrt{1-\\dfrac{\\upsilon^2}{c^2}}}; \\implies" "\\upsilon = c\\sqrt{1-\\dfrac{\\tau_0^2}{\\tau^2}};"
"\\upsilon = c\\sqrt{1-\\dfrac{(0.90\\sdot10^{-16})^2}{(1.5\\sdot10^{-16})^2}}=1.92\\sdot10^8m\/s;"
"E = \\dfrac{mc^2}{\\sqrt{1-\\dfrac{\\upsilon^2}{c^2}}}" ;
"E =\\dfrac{139.6MeV}{\\sqrt{1-\\dfrac{(1.92\\sdot10^8m\/s)^2}{(3\\sdot10^8m\/s)^2}}}=232.7MeV;"
Answer:"\\upsilon = 1.92\\sdot10^8m\/s;"
"E = 232.7MeV."
Comments
Leave a comment