We need to solve the given Differential equation
Solution:
Given equation is the Linear differential in the form "\\frac {dy}{dx} + P(x) y = Q(x)"
Now compare the given equation "\\frac {dy}{dx} + y \\space cot x = e^ {cos \\space x}" with the above form
"Q(x) = e^{cos \\space x}"
Integrating factor = I.F = "e^{\\int P(x) dx} = e^ {\\int cot x \\space dx} = e^ {ln \\space sin x} = sin \\space x"
The solution of the Linear equation is,
"y \\times sin x = \\int sin x \\space e^{cos x} dx + c"
"y \\space sin x = - \\int d(cos x) \\space e^{cos x} dx + c"
"y \\space sin x = - e^{cos x} + c"
Now we need to find the c value by plugging "x = \\frac {\\pi}{2} \\space and \\space y =-2"
"-2 =- e^0 + c \\\\\n-2 = -1 +c \\\\\nc = -1"
Finally the solution is ,
"y \\space sin x = - e^{cos x} -1"
Comments
Leave a comment