Question #106446
Solve dy/dt + ycotx = e^cosx for x= pi by two and y= -2
1
Expert's answer
2020-03-25T10:59:04-0400

Mechanics | Relativity

We need to solve the given Differential equation

Solution:

Given equation is the Linear differential in the form dydx+P(x)y=Q(x)\frac {dy}{dx} + P(x) y = Q(x)


Now compare the given equation dydx+y cotx=ecos x\frac {dy}{dx} + y \space cot x = e^ {cos \space x} with the above form



P(x)=cot xP(x) = cot \space x

Q(x)=ecos xQ(x) = e^{cos \space x}

Integrating factor = I.F = eP(x)dx=ecotx dx=eln sinx=sin xe^{\int P(x) dx} = e^ {\int cot x \space dx} = e^ {ln \space sin x} = sin \space x


The solution of the Linear equation is,



y×(I.F)=(I.F)×Q(x)dx+cy \times (I.F) = \int (I.F) \times Q(x) dx + c

y×sinx=sinx ecosxdx+cy \times sin x = \int sin x \space e^{cos x} dx + c

y sinx=d(cosx) ecosxdx+cy \space sin x = - \int d(cos x) \space e^{cos x} dx + c

y sinx=ecosx+cy \space sin x = - e^{cos x} + c

Now we need to find the c value by plugging x=π2 and y=2x = \frac {\pi}{2} \space and \space y =-2



2(sinπ2)=ecosπ2+c-2 (sin \frac{\pi}{2} ) = - e^{cos {\frac {\pi}{2 }}} + c

2=e0+c2=1+cc=1-2 =- e^0 + c \\ -2 = -1 +c \\ c = -1

Finally the solution is ,

y sinx=ecosx1y \space sin x = - e^{cos x} -1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS